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Abstract—Predicting vaccine hesitancy at a fine spatial level as-
sists local policymakers in taking timely action. Vaccine hesitancy
is a heterogeneous phenomenon that has a spatial and temporal
aspect. This paper proposes a deep learning framework that
combines graph neural networks (GNNs) with sequence module
to forecast vaccine hesitancy at a higher spatial resolution. This
integrated framework only uses population demographic data
with historical vaccine hesitancy data. The GNN learns the spatial
cross-regional demographic signals, and the sequence module
catches the temporal dynamics by leveraging historical data.
We formulate the problem on a spatial graph where nodes
are zip codes. We consider three variants of the graph based
on three different criteria: geographic adjacency, distance, and
mobility from an acitivty-based social contact network. Our
framework effectively predicts the spatio-temporal dynamics of
vaccine hesitancy at the zip-code level when the mobility network
is used to formulate the graph. We use our combined model for
two tasks: 1) spatial prediction and 2) temporal prediction. In the
spatial prediction task, we partition the zip codes into two sets:
known and unknown. We utilize the vaccine hesitancy data from
the known zip codes to predict the vaccine hesitancy levels for
the unknown zip codes at time t. Temporal prediction forecasts
vaccine hesitancy for each zip code at the next time point t+1.
Experiments on the real-world vaccine hesitancy data from the
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All-Payer Claims Database (APCD) show that our framework
can outperform a range of baselines for both tasks. Our study
finds that only historical time series data for vaccine hesitancy
levels without spatial consideration is insufficient to learn the
hesitancy pattern.

Index Terms—Graph neural network, prediction, clustering,
claim data, vaccine hesitancy

I. INTRODUCTION

Highly contagious diseases, such as measles, are regarded
as vaccine-preventable (VPD) because of the availability of
the Measles, Mumps, and Rubella (MMR) vaccine, which
has a very high efficacy rate. Measles is preventable using
high rates of immunization. The MMR vaccine is required
by public schools in most parts of the world, including the
US, and measles was declared as “eliminated” from the US in
2000 [1]. Unfortunately, immunization rates are declining for
many childhood vaccines, and outbreaks of measles and other
VPDs have been occurring regularly in recent years across the
world. For instance, there was a large outbreak in New York in
2019, which caused over 900 cases [2]. In 2021, Nigeria had
over 10,000 cases [3], and there were 128,000 deaths due to
measles worldwide [4]. The risk of measles, and other vaccine-
preventable diseases, has significantly been exacerbated due to
the COVID-19 pandemic [5].

There are a number of reasons behind the drop in im-
munization rates, and hesitancy is the leading among them.
Even before the pandemic, though the MMR vaccine cov-
erage was quite high (∼ 95%) for kindergarten children



nationally [6] (which is a high enough rate to reach herd
immunity), it was not evenly spread geographically, and there
were significant pockets of undervaccination [7]–[10]. During
the pandemic, significant drops in routine immunizations have
been reported [11]–[13] In 2020 and 2021, over 27 and 25
million children were estimated to have missed their first dose
of the measles vaccine, respectively [12], [14]. Measles is now
viewed as an imminent global threat [13].

Vaccine hesitancy is a growing concern in public
health [15], and predicting vaccine hesitancy at the higher
spatial resolution is considered a fundamental problem, as
heterogeneous vaccine coverage significantly increases the risk
of outbreaks [16], [17]. One of the significant challenges in
understanding the extent of hesitancy and how it is spreading
is the limited availability of surveillance data on declining
immunization rates, especially at finer spatial resolutions.
Surveys on immunization rates are often available at a coarse
resolution (e.g., a state) [11], [12], which does not help
identify specific under-immunized regions for intervention.
Many states provide immunization rates for schools through
the School Immunization Survey (SIS) reports [18]. However,
they only consider specific age groups (e.g., 4-6 years) and
even in this age group, fail to cover a large population (e.g.,
those who are home-schooled).

The focus of our paper is to develop methods to predict
vaccine hesitancy at the zip code level; we refer to this as
the VACCHESITANCY problem. In this work, we investigate
vaccine hesitancy among kids aged between 0-6 years. Prior
works have used this information as a reflection of parental
vaccine intention [19]. Kids in this age range are expected to
receive a set of mandatory vaccines including MMR (Measles,
Mumps, and Rubella), HepB (Hepatitis B), and DTaP (Diph-
theria, Tetanus, and Pertussis). A novel aspect of our work is
the use of an extensive insurance claims dataset for Virginia
that includes all insurance claims for over 5 million individuals
over a five years period.

Analyzing vaccine hesitancy has been an active area of
research. Many works have focused on understanding hes-
itancy and identifying the responsible factors using social
media data [20]. However, these data contain notable biases
from demographic variations in platform preferences and the
information individuals opt to share. On the other hand, some
recent data-driven approaches use detailed individual-level
data, making it harder to generalize. We discuss the relevant
works on vaccine hesitancy modeling in Section II.

Our main contributions are as follows:

• We develop a novel approach, VH-GNN, for the VAC-
CHESITANCY problem by combining a GNN and a recur-
rent neural network (RNN) using demographic data and
historical hesitancy data, along with detailed population
mixing data in the state. The GNN captures the spatial
aspect of vaccine hesitancy by learning the impact of
neighboring zip codes with respect to population-level
mixing. The RNN learns temporal dynamics by leverag-
ing historical hesitancy data. In the rest of the paper, we

refer to the combined framework as VH-GNN; Vaccine
Hesitancy predicting Graph Neural Network. Figure 1
shows the VH-GNN architecture.

• We train and evaluate the VH-GNN using the large-
scale insurance claims data set for the state of Virginia,
mentioned earlier, and show that our model outperforms
a number of baselines, leading to a substantial reduction
in prediction errors ranging from 18.40% to 43.4%.

• Through an ablation study, we demonstrate the effective-
ness of the combined framework in improving model per-
formance. In particular, we find that spatial structure from
the detailed population-level mixing is very significant in
forecasting vaccine hesitancy. We explore other kinds of
connectivity and spatial structure too, but do not find them
to be as predictive.

• While the performance of VH-GNN is generally superior,
we find there are some zip codes (denoted by set VL)
where the prediction error is high. We identify several
features which characterize the zip codes in VL such
as size of population in the target age group, vaccine
hesitancy percentage, medicaid insurance percentage, his-
panic population percentage.

• In order to understand the structure of the solution from
VH-GNN and the true hesitancy level datasets, we use
the Moran’s-I and isolation indices, which are metrics
for quantifying spatial clustering. We find that Moran’s-
I is high and the isolation index is low, indicating a
similar clustering structure between the solution predicted
by VH-GNN and the actual claims dataset.

II. RELATED WORK

Research on vaccine hesitancy prediction can be divided
into two major categories: data-driven studies and model-based
studies. Recent data-driven vaccine hesitancy studies explore
different machine learning models, such as neural networks,
random forest, logistic regression, recursive partitioning, and
support vector machines, to find local vaccine hesitancy
hotspots or to predict individual decisions [21]–[23]. These
studies do not consider the spatial aspect of vaccine hesitancy.
However, vaccine refusal has a spatial clustering nature, and
the immunization status of kids shows correlations in the
same neighborhood, schools, or jurisdictions [7], [24], [25]. In
addition, these studies have used detailed socio-economic data,
including siblings’ vaccination history and private medical
history, which are inaccessible in many cases due to privacy
concerns. In this work, using only features developed at the zip
code level, such as population size, gender, race, and insurance
type, we are able to achieve high performance.

Mollalo and Tattar [26] study the spatial distribution of vac-
cine rates in the US based on social vulnerability index using
a multiscale geographically weighted regression model [26].
Their work identifies important covariates and shows that their
importance varies across space. A recent spatial mathematical
model of opinion dynamics with reinforcement explains the
occurrence of vaccine hesitancy. Mathematical models often
do not consider heterogeneous social connectivity.
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Fig. 1: Architecture of the spatio-temporal graph-based node-level regression learning for the prediction of vaccine hesitancy.

To address the spatial neighbor impact and temporal dynam-
ics of vaccine hesitancy, we use a graph-based deep learning
framework. It combines Graph Neural Network (GNN) with
a sequence module for a node-level prediction task. GNN is
a deep-learning tool specialized to handle graph data [27].
GNN is widely used in different domains for graph-related pre-
diction tasks, such as node classification, link prediction, and
graph classification. GNNs have demonstrated good prediction
capabilities for spatial data, such as house price estimation,
understanding election results [28], and weather forecasting.
In this graph-based research, nodes represent zip codes, and
edges represent the connectivity among zip code pairs.

Patient refusal or vaccine hesitancy sentiment is changing
with time. To learn the temporal aspect of the vaccine hes-
itancy levels for a location, we propose a sequence module
to handle time series data for each zip code. Our framework
uses a recurrent neural network structure with Gated recurrent
units (GRUs) [29] as the sequence module.

Spatio-temporal graph learning has been used in recent
times to forecast traffic flow [30], disease prevalence [31],
etc. Prior works have used different combinations of GNN,
RNN, or Convolutional Neural Networks (CNN) to perform
spatio-temporal forecasting tasks [32], [33]. Traffic forecasting
is an example of spatio-temporal modeling. Yu et al. show the
potential of graph-based learning frameworks for timely and
accurate traffic forecasts with comparisons between CNN and
RNN. We extended these concepts to predict vaccine hesitancy
for a zip code in the next time step. For spatio-temporal
learning, we use a static network, where nodes are zip codes,
and edges are connections among pairs of zip codes. Nodes
have time-varying features as attributes. Using demographic
and historical vaccine hesitancy data, we forecast the vaccine
hesitancy percentage of a node or a zip code.

III. METHODS

A. Preliminaries

Our goal is to learn vaccine hesitancy, measured by the
percentage of patients refusing to take the vaccine within a

zip code. As inputs, we use historical vaccine hesitancy data
and demographic features of a zip code (which includes age,
gender, race, ethnicity, and insurance type), and spatial zip
code level connectivity information of several types.

Let G(V,E,A) denote a graph, where V denotes the set
of N zip codes. We consider three types of connectivity
information in defining the edges: geographic adjacency, the
distance between zip codes, and mixing through an activity-
based network (described below in Section III-C). Let AN×N

denote the weighted adjacency matrix. An entry of A, a(i, j),
represents the connection from node i to j. A node i is
associated with a feature vector xi(t), which is time-dynamic.
here, XT×N×k is the feature matrix at time t, and k is the
number of features.

The VACCHESITANCY problem. Let hi(t) denote the frac-
tion of patients indicating hesitancy in zip code i at time
t (which will be specified later in Section IV); let h(t)
denote the vector of hesitancy levels. The VACCHESITANCY
problem we involve learning h(T ) using historic hesitancy
levels h(t′), demographic characteristics of zip codes in V ,
and the connectivity network G.

B. Framework

An analysis of the hesitancy levels h(t) over time from
the dataset reveals spatial heterogeneity and correlations (pre-
sented in the Appendix), which motivates our GNN approach
based on spatial structure. Our VH-GNN framework (Algo-
rithm 1) has two major modules: 1) a spatial module, and 2)
a sequence module (Figure 1). The spatial module consists of
graph forming and graph-based spatial dependency learning,
described in Section III-C.

C. Spatial Module

1) Graph Architecture.: The graph G is a static graph with-
out self-loops. We propose three intuitive node connectivity
mechanisms to form three variants of G.



• Geographic adjacency graph Ga: If node i and node j
share a geographic boundary, they will form an edge in
the network G. The weights on each edge is 1.

• Distance-based graph Gd: This is a fully connected graph
where the weight on edge (i, j) has weight equal to the
inverse of the distance between the centroids of the two
end points.

• Mobility graph Gm: This graph represents population
movement. We form Gm from an activity-based detailed
population-level social contact network Hp [34]–[36].
The nodes in Hp represent individual people, and each
node is associated with a location. We aggregate this
network at the zip code level to get Gm. If there is
any connection from the population of zip code i to zip
code j, we form an edge in the graph Gm. This edge
has an associated weight equal to the total number of
connections from zip code i to j in the graph Gp.

All edge weights are normalized using min-max normalization.
2) Graph-based Spatial Dependency Learning.: Learning

the spatial distribution of vaccine hesitancy with demographic
characteristics is a major task. We leverage graph neural
network (GNN) [37] to learn spatial dependency for each
time step through message passing. In this work, node features
change with time, but the graph connectivity is static. For
each time step, we have one GNN module, which consists of
stacking multiple k-GNN layers [38] and a linear layer to
perform node-level vaccine hesitancy prediction. We model
it as a regression task. The k-GNN is a generalization of
graph neural networks based on the k-dimensional Weisfeiler-
Leman algorithm (k-WL). This variant of GNN performs mes-
sage passing directly between subgraphs instead of individual
nodes. The lth layer of the first-order GNN is

xl(i, t) = α

(
xl−1(i, t) ·W l

1

+
∑

j∈N (i)

a(i, j) · xl−1(j, t) ·W l
2 + bl

)
(1)

Here, l > 0, α represents an activation function (e.g.,
sigmoid or ReLU). W1, W2 ∈ Rdl−1×dl are weight matrices
parametrizing GNN layer l, bl ∈ Rdl is the parameters of the
l-th layer, dl is the dimension, and N (i) is the neighborhood
of i. The output of the graph embedding module is an
intermediate solution yN×dlo for each time point t. lo is the
final layer of the graph embedding module. For T time steps,
we merge the y matrix to form Y T×N×dlo .

D. Sequence Module

To learn the temporal aspect of the vaccine hesitancy for a
node i, we use a sequence module. The input of this module is
matrix Y , which will predict vaccine hesitancy at time T . This
module can be built using any model that can learn sequences;
popular choices are moving average, ARIMA, and recurrent
neural networks. Recurrent neural networks (RNN) are well-
known for predicting sequence data. In this work, we leverage

a variant of RNN known as Gated Recurrent Units (GRU) [39].
We also experiment with LSTM (Long Short-Term Memory)
and moving average. The fundamental concepts underlying
LSTM and GRU models are quite similar. Both employ gated
mechanisms to retain extensive long-term information, making
them equally proficient for diverse tasks. We find that GRU
performs better in the VH-GNN framework. It trains faster
with fewer parameters compared to the LSTM variant. Hence,
it has better potential to learn from large multidimensional
datasets.

E. Optimization

This framework optimizes two modules separately with
optimizers opt1 and opt2. We use two loss functions to reduce
the error between predicted vaccine hesitancy H(T ) and the
true vaccine hesitancy Ĥ(T ). The first loss function loss1
minimizes the error for the graph learning module at each time
step t = 0, 1, .., T , and the second loss function loss2 reduces
errors for the sequence learning module. We use the mean
absolute error (MAE) metric to learn the model parameters.

loss1 = MAE(y(t)− ˆy(t)) + λLr (2)

loss2 = MAE(H(T )− ˆH(T )) + λLr (3)

loss1 takes into account all time steps, and loss2 takes only
the final time step. In this research problem, for any time step
t, ˆy(t) = ˆH(t), as the graph learning module is predicting
vaccine hesitancy for that time step from xi(t). Here, λ is
a hyper-parameter, and Lr is the L2 regularization term to
prevent over-fitting. We optimize two modules separately as
we do not want to influence one module’s parameters due to
the other module’s performance. Algorithm 1 details the steps
taken.

IV. EXPERIMENTS AND RESULTS

A. Data

We use five years (2016-2020) of the All-Payer Claims
Database (APCD) to find the patient refusal levels for each
zip code in Virginia.

The data is obtained from VHI (Virginia Health Informa-
tion). It contains information on paid medical and pharmacy
claims for roughly 5 million Virginia residents with commer-
cial, Medicaid, and Medicare coverage across all types of
healthcare services. Among other things, it provides informa-
tion on immunization rates over time, by spatial regions, and
by demographics.

International Classification of Disease ICD-10-CM code
Z28 is used to filter Patient refusal from medical data. Z28
means, “Immunization not carried out and underimmuniza-
tion status” [40]. We also analyze the immunization rates
as provided in the Virginia Department of Health School
Immunization Survey (VDH SIS) reports. We find that vaccine
hesitancy is changing in Virginia (Table III). However, we only
use APCD for VACCHESITANCY, as our targeted population is
0-6 years old, and VDH-SIS does not contain this information.
In this work, we use six months as the time unit. We find



Algorithm 1 VH-GNN for Spatio-Temporal Vaccine Hesi-
tancy Learning
Input: Feature matrix X , graph G, GNN module Mg , se-
quence module Ms, λ, number of training steps trains, hyper-
parameters

1: Split the nodes into two sets train, and test randomly.
2: Initialize model Mg and Ms with random weights and

hyper-parameters.
3: Set optimizer opt1 and opt2 with hyper-parameters.
4: for number of training steps trains do
5: for for each time step t do
6: if t < T then
7: y(t)←Mg(G,X(t))
8: else
9: y(t)←Mg(G,X(t).train)

10: end if
11: compute loss1 and update Mg using Adam optimizer
12: end for
13: Form Y from all y(t)
14: H(T )←Ms(Y )
15: compute loss2 and update Ms using Adam optimizer
16: end for
17: return loss2

that monthly data is sparse at the zip code level. From a
detailed Exploratory Data Analysis, we find that patient refusal
and vaccine hesitancy is changing over time. From the spatial
analysis, we observe that vaccine hesitancy of a location has
similarity with its neighboring areas (Figure 2)

In this paper, ‘zip code’ refers to a ZIP Code Tabulation
Area (ZCTA). A ZCTA corresponds to a geographical repre-
sentation of a service area for a United States Postal Service
(USPS) ZIP Code. This delineation is made publicly available
by the US Census Bureau [41]. We use 615 zip codes of
Virginia (N = 615) out of 1241. Among them, only about
52% zip codes have a population size of more than 1000. We
discard zip codes that do not have any entry for kids (aged
0-6) in the APCD data or have a very small population size.

B. Data Preprocessing

From the APCD data, we filter all patients’ entries of
children aged six or below. Then we prepare a data set
for each time t for N nodes, which keeps a record of the
number of unique kids, the number of unique kids in different
genders, the number of unique kids in different races, the
number of unique kids in two different medical insurance types
(commercial and Medicaid), and the percentage of kids who
refuse to take any vaccine at least once. We use “medical
insurance type” as a proxy for the income level. We assume
that patient refusal at this age represents parental vaccine
intention.

At each time step t, the last column of the data set
is the target value; vaccine hesitancy ˆH(t), other columns
are features of nodes. A node i has ten features at a time
step t, including male population, female population, Asian

population, Black population, White population, and Hispanic
population. We use min-max normalization to normalize all
columns for each time step t as we update our Ms module.
Then, we find the principal components of the features by
using Principal Component Analysis (PCA).

C. Experimental Setup

This study uses the GNN version of Morris et al. [38].
We also explored other strategies, such as Graph Convolu-
tional Network (GCN) [42], which can handle weighted static
graphs. However, we find that the GNN of Morris et al.
performs better in predicting vaccine hesitancy.

We manually adjust the hyper-parameters of the framework,
such as the learning rate, the regularization term, the training
epoch, and the number of hidden units. We use a learning rate
of 0.0005, a training epoch of more than 10,000, and a learning
rate of 10−4. We find that using more than two GNN layers
overfits the training data while using less than two introduces
bias in the system. For module Mg , we experiment on hidden
units [64,128,256,512]. For module Ms, we experiment on
hidden units [8,16,32,64]. The setup for Mg with 128 hidden
units and Ms with 16 hidden units performs better for the VH-
GNN. For all GNN layers and GRU layers, we implement 50%
dropout to avoid over-fitting.

We use Python 3.8 to implement the framework. We utilize
the open-source deep-learning framework PyTorch version
2.0.0 and NVIDIA CUDA 11.4.2 in a Simple Linux Utility
for Resource Management (SLURM) system.

D. Evaluation Metrics

The focus of the VACCHESITANCY study is node-level
regression tasks. We use mean absolute percentage error
(MAPE), Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and R-squared (R²) metrics to evaluate the
performance of the VH-GNN framework in predicting spatio-
temporal vaccine hesitancy at the node level. The well-known
evaluation matrics ROC AUC, F1 score, recall, and precision
are not appropriate for our estimation task as they are designed
for classification tasks.

• Root Mean Squared Error (RMSE):

RMSE =

√
1

|test|
∑

(Htest(T )− ˆHtest(T ))2 (4)

• Mean Absolute Error (MAE):

MAE =
1

|test|
∑
|Htest(T )− ˆHtest(T )| (5)

MAE is only used during model training. For the test data set,
RMSE and MAE metrics are utilized to gauge the model’s
predictive performance. Smaller values of RMSE and MAE
indicate better prediction accuracy.

E. Baseline Methods

The performance of our combined graph framework is
compared with the following baseline methods:



Fig. 2: Vaccine hesitancy rate among kids (age 0-6 years) at the zip-code level in Virginia from the APCD data.

TABLE I: Yearly patient refusal count in Virginia from APCD data.

Count per year

2016 2017 2018 2019 2020

Refusal claim any age 92790 197185 249610 297220 261972

Unique refusal patient any age 27947 56844 77679 85003 69303

Refusal claim among age 0-6 years 28301 74506 81542 85935 86844

Unique refusal patient age 0-6 years 7312 15268 18340 18015 17263

TABLE II: Yearly patient refusal percentage in Virginia in the APCD data and in the VDH SIS reports.

Vaccine hesitancy
Year

Source
2016 2017 2018 2019 2020

Patient Refusal 1.55% 3.31% 4.01% 4.08% 3.83% APCD

State Public School Unimmunized or not
Adequately Immunized

3.6% 3.9% 3.7% 3.6% 11.9% VDH SIS

State Private School Unimmunized or not
Adequately Immunized

5.8% 6.7% 6.7% 4.8% 7.6% VDH SIS



• Linear Regression with Neighbors (LRN): We first
evaluate our model’s performance against the Linear
Regression approach, where this baseline method is used
to predict the dependent variable H(T ) using input
features. Linear regression fits a linear model to min-
imize the residual sum of squared differences between
true and predicted values using linear approximation. To
make a fair comparison, we provide an extra feature,
neighbor’s information, for each node i, we calculate∑

j∈N (i) hj(t)a(i, j).
• Multi-layer Perceptron (MLP): We also experiment

with this second benchmark method, Multi-layer Percep-
tron (MLP), to assess our model’s effectiveness. This
feedforward neural network architecture is capable of
capturing complex non-linear relationships within data.

• Graph Convolutional Network (GCN): GCN is our
third benchmark method. It uses convolutional architec-
ture to capture both local and global patterns within
graph-structured data for semi-supervised learning.

• Graph Convolutional Network & Gated Recurrent
Units (GCN-GRU): In this fourth benchmark, we replace
Ms module with the GCN in the VH-GNN.

Figure 3 shows the mean output performances of all the
baselines compared to the VH-GNN framework for the target
years 2019 and 2020. The same train and test data sets were
used for all models. We always use a batch gradient process
to update the model parameters. We employ model-specific
hyperparameters to unlock their full potential. Results indicate
that VH-GNN outperforms all baselines in both evaluation
metrics. It is also evident that the VH-GNN performed better
for the year 2019 compared to 2020.

The results are also affected by the choice of node con-
nectivity mechanisms. Table IV shows the performance of
VH-GNN using three G variants for 2019. The VH-GNN
performs the best when mobility graph Gm is used. Hence, the
remaining set of results in this paper for VH-GNN is produced
using Gm.

Figure 4 shows predicted values vs true values for 2019.
The R2 value is 0.61.

F. Ablation Study

We conduct an ablation study to understand the role of two
modules of the VH-GNN.

• VH-GNN w/o Ms module: In this setup, we only train
the spatial learning module Mg with the loss1 function
and evaluate the prediction performance only using Mg .

• VH-GNN w/o Mg module: In this setup, we only keep
the sequence learning module, which is the GRU model.
Here, we train Ms by using ˆHtest for t = 0 to t = T −1
and ˆHtrain for t = 0 to t = T . It does not consider any
graph structure.

Table V shows the prediction performance of the two modules.
Ablation study shows the importance of spatial learning for
node-level vaccine hesitancy forecasting. Although our com-
bined framework performs better than either of these config-
urations, the VH-GNN w/o Ms outperforms VH-GNN w/o

(a)

(b)

Fig. 3: A comparative analysis between our VH-GNN and the
baseline methods across 2019 and 2020. Figure 3a and 3b
show that our method outperforms alternative approaches, as
evident in both the RMSE and MAE metrics.

Mg . This indicates the importance of the spatial component
in explaining vaccine hesitancy.

G. Performance Analysis at the Node Level

The properties of nodes were investigated where VH-GNN
performed poorly. For a comparative analysis, the nodes are
divided into two sets, one where VH-GNN performs poorly
and the other where it performs well. The test nodes are sorted
according to the absolute error between predicted and true
vaccine hesitancy values, and the nodes were divided into two
sets:

• Nodes with Large Error, VL: Top 25% nodes, nodes
with large error, where VH-GNN did not perform well.

• Nodes with Small Error, VS: Rest of the test nodes,
where VH-GNN performs well.

We investigated features of two sets: VL and VS , to see why
the VH-GNN framework does not predict well. We find that
population sizes, vaccine hesitancy percentages, population
percentages with Medicaid insurance, and Hispanic popula-
tions differ between these two sets. Table VI reports the



TABLE III

T+1 T+4

R2 MAE MSE MAPE RMSE R2 MAE MSE MAPE RMSE

GCN-LSTM 0.8813 0.0276 0.00259 29.7731 0.05089 0.87117 0.02940 0.00281 33.1513 0.05304

GCN-GRU 0.85914 0.03034 0.00307 31.5569 0.05546 0.8215 0.03283 0.00389 35.183 0.06242

GCN 0.8343 0.031510 0.003616 35.1869 0.06014 0.8358 0.031065 0.00358 33.1212 0.059878

LSTM 0.8094 0.03403 0.004161 36.6645 0.06451 0.75083 0.0388 0.00544 41.8586 0.07376

LR 0.68813 0.04536 0.00681 48.871 0.08252 0.66685 0.04751 0.0072 51.190 0.08529

MLP 0.78269 0.03619 0.004747 38.9923 0.06890 0.7024 0.04423 0.00649 45.7539 0.08016

TABLE IV: Prediction performance of VH-GNN across three
graphs connectivity mechanisms for the year 2019.

Graph RMSE MAE

Adjacent Graph Ga 0.2047 0.1487

Distance-based Graph Gd 0.1816 0.1342

Mobility Graph Gm 0.1554 0.1019

Fig. 4: Predicted vaccine hesitancy and the true vaccine
hesitancy in the test set for year 2019.

TABLE V: Ablation study on two setups for the year 2019, 1)
VH-GNN w/o Ms module, and 2) VH-GNN w/o Mg module.

Ablation Study Setting RMSE MAE

VH-GNN w/o Ms module 0.2054 0.1434

VH-GNN w/o Mg module 0.4557 0.3820

TABLE VI: Average values of significant features in the set
VL (nodes with large errors) and VS (nodes with small errors).

Features VL VS

Kids Population 311.62 873.24

Vaccine Hesitancy Percentage 0.026 0.033

Population Percentage with Medicaid 0.647 0.609

Hispanic Population Percentage 0.006 0.016

Fig. 5: Vaccine hesitancy percentage in two sets, VL and VS .

average of these features for VL and VS sets. Table VI shows
that the kids’ population sizes are significantly different across
VL and VS . The VH-GNN is prone to have large predictive
errors for nodes that have a small population with a high
vaccine hesitancy level. Further investigation in Figure 5 shows
that VH-GNN also performs well when the vaccine hesitancy
percentage is high.

H. Forecasting Performance

We test the VH-GNN as a vaccine hesitancy forecasting
tool. For this purpose, we train the VH-GNN until the T − 1
time step, then we use VH-GNN to forecast vaccine hesitancy
percentages for all zip codes at time T . Figure 6 shows the
forecast vaccine hesitancy percentage. The mean RMSE and
MAE value for this case is 0.1602 and 0.1115.
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Fig. 6: Vaccine hesitancy forecast for all the zip codes of
Virginia in the first half of 2019. Here, colors represent vaccine
hesitancy percentages.

I. Evaluation Metrics to Understand Spatial Structure

Understanding spatial structure is essential for the VACCH-
ESITANCY problem. We evaluate the performance of the VH-
GNN in capturing spatial structure by using two following
clustering measures:

• Moran’s-I: It is the measure of global spatial autocorre-
lation. This value ranges from −1 to 1, with 0 indicating
no autocorrelation; −1 indicating perfect clustering with
dissimilar values, such as clustering of high vaccine hes-
itancy location with the low vaccine hesitancy location;
and 1 indicating perfect clustering with similar values,
such as clustering of high vaccine hesitancy locations
with high vaccine hesitancy locations. The equation for
the Moran’s-I for a time t is

N∑
i

∑
j a(i, j)

∑
i

∑
j a(i, j)(hi − H̄)(hj − H̄)∑

i(hi − H̄)2
(6)

• Isolation Index: It indicates the level of segregation
within a specific group or cluster compared to the larger
population, with values ranging from 0 (no segregation)
to 1 (full segregation). The equation for the isolation
index for a time t is

N∑
i=1

[(
hipi∑N
i=1 hipi

)hi] (7)

Our predicted value from the VACCHESITANCY produces a
Moran’s I value of 0.8488 for the year 2019, and the actual true
value results in a value of 0.4580. The predicted value and the
true value both finds that individuals exhibiting higher levels
of vaccine hesitancy are more likely to be situated closely in
Gm.

The calculated isolation index from the predicted value and
the true value is 0.0466 and 0.0480 for the year 2019, both
indicates almost no segregation.

J. Spatio-temporal clustering

Vaccine hesitancy shows a spatial clustering phenomenon.
However, the cluster shape and sizes change over time. The
statistically significant clusters of higher vaccine hesitant zip
codes for five years are presented by dark color in Figure
7. We use a graph-based scan statistics method to identify

statistically significant geographical clusters of higher vaccine
hesitancy [43]. The scan statistics method is a hypothesis-
testing approach for anomaly detection, used in previous
studies to detect hotspots and anomalies in spatial distributions
[44]. We use a modified Kulldroff’s scan statistics method to
find statistically significant clusters of zip codes with higher
vaccine hesitancy in the adjacent graph Ga.
A cluster C ⊂ Ga of zip codes in the adjacent network Ga can
have an arbitrary shape. We calculate the scan statistic or score
function of a cluster of zip codes C as F (C) = Pr[Data|H1(C)]

[Data|H0]
which is a likelihood ratio of the probability of the observed
data (i.e., a certain level of vaccine hesitancy in C) generated
under an alternative hypothesis H1(C), to the probability of
the observations under the null hypothesis H0. We use the
Poisson version of the Kulldorff scan statistic, which assumes
that the observations are generated from Poisson distribution.
The null hypothesis H0 is generated proportionally from the
baseline count (1 − µ)Pi, where µ is the state-wide vaccine
hesitancy rate and Pi is kids population in a zip code i. The
alternative hypothesis of a cluster H1(C) counts the vaccine
hesitancy among nodes outside C; in Vz − C, the hesitancy
count comes from a rate proportional to the baseline counts.
But, for the nodes within C, the counts are generated at a
higher rate than expected. We use the Monte Carlo sampling
approach to compute the p-value for each cluster. Maximizing
F (C) is the objective function. The general dynamic program-
ming method allows us to optimize a large class of parametric
and non-parametric scan statistics [45]. We use 0.9 as the cut-
off p-value to consider significant clusters.

V. CONCLUSIONS

The VH-GNN framework is able to predict the spatio-
temporal aspects of vaccine hesitancy with a combined GNN
and RNN structure. Our method crucially uses a very large
all payers insurance dataset, and a detailed activity-based
synthetic contact network. Our method outperforms several
baseline methods in predicting vaccine hesitancy at a zip code
level, in terms of the RMSE and MAE evaluation metrics.

We also demonstrate the model’s effectiveness at the node-
level data, highlighting the challenges in learning vaccine
hesitancy for smaller populations. Although GRU is well-
known to handle sequential data, they are computationally
expensive and require a lot of data to train. We find that GRU
or neural network alone cannot predict vaccine hesitancy at
a zip code level. However, a combination of GNN and GRU
can learn the spatial and temporal aspects of vaccine hesitancy
and can predict patient refusal at a higher spatial resolution.
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