
A Web-Based System for Contagion Simulations on
Networked Populations

Tanvir Ferdousi
Biocomplexity Institute and Initiative

University of Virginia
Charlottesville, VA 22904, USA

jcr5wj@virginia.edu

Aparna Kishore
Biocomplexity Institute and Initiative

University of Virginia
Charlottesville, VA 22904, USA

ak8mj@virginia.edu

Lucas Machi
Biocomplexity Institute and Initiative

University of Virginia
Charlottesville, VA 22904, USA

lhm4v@virginia.edu

Dustin Machi
Biocomplexity Institute and Initiative

University of Virginia
Charlottesville, VA 22904, USA

dm8qs@virginia.edu

Chris J. Kuhlman
Biocomplexity Institute and Initiative

University of Virginia
Charlottesville, VA 22904, USA

cjk8gx@virginia.edu

S. S. Ravi
Biocomplexity Institute and Initiative

University of Virginia
Charlottesville, VA 22904, USA

ssr6nh@virginia.edu

Abstract—Motivated by a wide range of applications, research
on agent-based models of contagion propagation over networks
has attracted a lot of attention in the literature. Many of
the available software systems for simulating such agent-based
models require users to download software, build the executable,
and set up execution environments. Further, running the resulting
executable may require access to high performance computing
clusters. Our work describes an open access software system
(NetSimS) that works under the “Modeling and Simulation as a
Service” (MSaaS) paradigm. It enables users to run simulations
by selecting models and parameter values, initial conditions, and
networks through a web interface. The system supports a variety
of models and networks with millions of nodes and edges.

In addition to the simulator, the system includes components
that enable users to choose initial conditions for simulations
in a variety of ways, to analyze the data generated through
simulations, and to produce plots from the data. We describe the
components of NetSimS and carry out a performance evaluation
of the system. We also discuss two case studies carried out on
large networks using the system. NetSimS is a major component
within net.science, a cyberinfrastructure for network science.

Index Terms—Agent-Based Simulation, Contagion, Networks,
Modeling and Simulation as a Service, Cyberinfrastructure

I. INTRODUCTION

A. Background and Motivation

Many problems are studied by computing contagion dynam-

ics on networked populations. In these networks, nodes are en-

tities such as humans, companies, and institutions. Edges rep-

resent pairwise interactions between entities. Some examples

of research on contagion processes are: the transmission of

COVID-19 [1] and Ebola [2] viruses, diffusion of invasive bi-

ological species over multi-pathway spatial networks [3], sim-

ulation of individual movements among urban locations [4],

spread of information on social media platforms [5], analyzing

the dissemination of rumors in social networks [6], spread of

human behavior in social influence networks [7], propagation

of incivility among people [8], and shock-waves or economic

crises affecting financial institutions through their network of

obligations [9]. It is essential to develop computational tools

to study various aspects of contagions, as there is a wide range

of applications.

Because of this need, many agent-based simulation (ABS)

systems have been developed (see Section II). Many simulators

require software experience to configure a build environment,

compile software, and specify execution environments. Input

files must be constructed according to prescribed formats, and

output from simulations typically require post-processing (e.g.,

data analyses) to visualize results. Several of these simulation

systems are run from the command line. Most larger systems

require high performance clusters or other hardware to run

large-scale simulations and significant disk space for storing

data. These factors can limit a wide range of users, particularly

those not part of universities or companies with significant

computational resources. However, as described in this paper,

these limitations can largely be obviated by providing model-

ing and simulation as a service (MSaaS).

We and our teammates are currently developing a cyberin-

frastructure (CI) for network science called net.science [10].

“A cyberinfrastructure consists of computing systems, data

storage systems, advanced instruments, data repositories, and

visualization environments, all linked by high-speed networks

to facilitate scholarly innovation and discoveries not otherwise

possible” [11]. Further conceptual details regarding CIs are

given in [12], [13]. The net.science CI is operational, and

users can register for accounts and use the system free of

charge. One of its components is Network Simulation as a

Service (NetSimS). This component, which provides MSaaS,

is described in this work.

B. Contributions

1. Open access web-based system for performing con-
tagion dynamics simulations on networked populations.
The three major computational subsystems of NetSimS are

(i) simulation, (ii) data analysis, and (iii) data visualization.

306

2022 IEEE 18th International Conference on e-Science (e-Science)

978-1-6654-6124-5/22/$31.00 ©2022 IEEE
DOI 10.1109/eScience55777.2022.00044

20
22

 IE
EE

 1
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 e
-S

ci
en

ce
 (e

-S
ci

en
ce

) |
 9

78
-1

-6
65

4-
61

24
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

ES
CI

EN
CE

55
77

7.
20

22
.0

00
44

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 03,2023 at 15:15:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The major computational subsystems of NetSimS.

Note that these operations do not form a simple pipeline,

since for a given simulation, many data analyses and plots

maybe generated at user discretion. NetSimS is a major system

within net.science, which provides CI-wide functionality such

as data management and annotation (e.g., for provenance),

control flow, job submission and monitoring, data storage, and

file search, per the CI definition in Section I-A. In addition,

a web application (web app) has been built that provides

users with forms to input data and view outputs (data files,

tables, and visualizations). The web app provides an intuitive

interface even for users without programming experience. In

this paper, we confine our scope to the NetSimS system and

to those elements of net.science functionality that are specific

to NetSimS, such as the web app screens for configuring a

simulation, data analysis, and visualization parameters. See

Section III and Figure 2. Furthermore, NetSimS without the

web app is built according to the MSaaS paradigm because

all NetSimS functionalities are accessible through system

application programming interfaces (APIs). In fact, the web

app uses those APIs to submit service requests for simulations

and to retrieve files. These APIs and their direct usage will be

presented in an expanded version of the paper.

2. Software module for specifying simulation initial con-
ditions. The three computational subsystems of NetSimS are

shown in Figure 1. The simulation subsystem is the largest and

most complex. Its two major components are the simulation

engine and the module for specifying the initial conditions

of a simulation. The simulation engine Contagion Simulation

on NETworks (CSonNET) has been covered in [14]. Hence,

our contribution and focus here are on the new module for

specifying initial conditions for simulations. Most simulation

tools use simple seeding methods or put the burden on the

user to generate seeding (i.e., initial conditions) files.

Section III-A2 presents the system design, description of

operations, and an algorithm for the initial conditions module.

It is a generalized framework for initializing nodes to states

at the start of each simulation instance. Initially activated

nodes are called seeds or seed nodes. Eleven filtering pa-

rameters (metrics) are provided; currently, these are structural

parameters of networks (e.g., node degree, k-shell, clustering

coefficient), but can be expanded to include properties (e.g.,

labels) of nodes and edges. For each metric, a [min,max]
range can be specified from which candidate seed nodes are

filtered. Nodes can be prioritized in ascending or descending

order for each metric. For example, a user may want to

select nodes with high in-degree centrality and low clustering

coefficient. The module allows users to specify a combination

of metrics through a configuration file, where each metric may

also have an associated weight. A weighted sum of normalized

metric values is used for final node selection and sampling.

This final step can be configured to sample nodes uniformly

at random or using the probability distribution derived from

the weighted sum of metrics. There are also options for de-

terministic selection. All of these inputs are specified through

web app forms, and backend files are generated automatically.

See Section III-A for details.

3. Performance evaluation. We present performance data

for the simulation subsystem, and in particular, for the CSon-

NET simulation engine and the initial conditions module. The

simulation system scales to networks with 3.5 million nodes on

our Rivanna high performance computing (HPC) cluster with

Intel 40-core compute nodes. These are denoted herein as large

networks. Specifically, we provide strong scaling results for the

simulation engine and timing data for the initial conditions

module. For the latter, the metric computation times for all

nodes may be significantly greater than or significantly less

than the time to filter nodes for seeding. See Section IV.

Performance results are hardware dependent (so even larger

networks can be analyzed with suitable hardware); our sub-

systems will run on several operating systems since our codes

are Python-based.

4. Case studies. Two case studies are performed: one on a

2.65 million node social contact network of Seattle, Washing-

ton, and another on a synthetic 120 thousand node preferential

attachment network. These simulations and results evaluate

the effects of seeding methods, filtering parameter values for

seeding, numbers of seeds, and model parameters. Results

change significantly with seeding parameters, justifying the

construction of a robust simulation seeding module. These

studies, presented in Section V, demonstrate the value of

NetSimS to identify input parameters and quantify parameter

regimes where results change most rapidly.

A note on contagion models: In subsequent sections, we

consider several well-known models of contagion propagation

in networks. Here, for space reasons, we limit ourselves to

brief accounts of these models. In the threshold model [15],

each node v has a threshold θ(v), a non-negative integer. Node

v changes to the activated state when at least θ(v) of its

neighbors are also in the activated state. In the susceptible-
infected-recovered (SIR) model, each node is in one of the

states from {S, I,R}, and each edge e has a transmission

probability p(e). Details regarding the stochastic process that

governs how a node in state S is infected by a neighbor in

state I and how nodes change from I to R are presented in

many standard references (e.g., [16]). A variant of the SIR

model is the SEIR model, where there is an additional state

E (for “exposed”) between S and I states, and the transitions

between the states are also stochastic [16].

II. RELATED WORK

A variety of software tools are available for ABS on

networks. Some are command line tools, while others have

307

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 03,2023 at 15:15:29 UTC from IEEE Xplore. Restrictions apply.

graphical user interfaces. Many of these can operate as ser-

vices. We address several of these categories.

A. Simulation Systems

These systems are typically run from the command line,

using HPC hardware. Some use distributed computing, while

others use multithreading. Examples of high performance

simulation frameworks include RePast HPC [17], Swarm [18],

MASON [19], Flame [20], NDlib [21], Rensselaer’s Optimistic

Simulation System (ROSS) [22], and AnyLogic [23]. A data-

intensive simulation framework is discussed in [24]. Reviews

of ABS can be found in [25], [26].

B. Simulations with IDEs

At the other end of the spectrum are NetLogo [27] and

Repast Symphony [28]. Although these are not necessarily

geared for HPC and large populations, they are powerful

and provide intuitive modeling environments with integrated

development environments (IDEs), high-level abstractions for

model building, and displays. Among their distinguishing

features are ease of use and ease of learning. Like the other

simulators mentioned thus far, these are locally built and run

on user-provided resources.

C. Modeling and Simulation as a Service

Advantages of MSaaS were identified in Section I-A. More

comprehensive discussion on MSaaS including architectural

aspects, state of the art, and comparative analyses can be

found in [29]–[31]. A client-side web app and a crowd

movement simulation (e.g., a crowd exiting a building) system

are described in [32]. Simulations that use the μsik ker-

nel [33] in conjunction with cloud computing are discussed

in [34]. Another cloud-based simulation service [35] has been

proposed to make large-scale urban simulations available to

the general public. An early work [36] focuses on taking

advantage of concurrent processing in the cloud. A service-

oriented architecture suitable for military and defense applica-

tions is discussed in [37]. Taylor et al. [38] discuss a cloud-

based simulation platform that can host a variety of industrial

simulation applications. A large-scale multi-agent system sim-

ulation service is described in [39]. MSaaS has also been used

for high school STEM education [40] to demonstrate traffic

simulations. Our system, which is focused on carrying out

contagion simulations on an underlying network, can run in

both cloud and cluster environments.

D. Seeding Methods in Other Simulators

NDlib [21] handles initial conditions (i.e., seeding) in one

of two ways: (i) a number of nodes that are initially activated

can be specified, and these nodes are selected by choosing

them uniformly at random, or (ii) an initial conditions file is

user-generated, where the initial state of each node is listed.

Other simulators also follow these two common approaches.

NetLogo [27] supports uniform random sampling of agents

to allocate states. Flame [20] requires users to provide initial

states in an XML file. Agent-based simulation tools like

Fig. 2: The operational architecture of NetSimS system compo-
nents: CSonNET, Data Analysis, and Plotting within the net.science
CI. The underlying framework of net.science provides features to
enable job submission, file I/O, execution of containerized code, data
management, and storage.

MASON [19] provide methods to define and initialize agents,

leaving it up to the user to configure initial conditions.

III. NETSIMS SOFTWARE SYSTEM

Figure 2 depicts the structure of the NetSimS system

within the net.science CI. The diagram identifies several key

subsystems, components, and services. The front-end contains

components that a user interacts with through web page

forms, data tables, and visualizations. Jobs are constructed

from user inputs and submitted to a Slurm scheduler that

controls the job execution environment. Currently, all jobs

run on an HPC cluster of multicore compute nodes, but other

hardware can be supported (e.g., GPUs, cloud services). The

system extracts from storage the relevant files, including input

data and containerized code, and runs jobs from temporary

workspaces allocated for those jobs. For NetSimS, container-

ized software includes the simulation, data analysis, and vi-

sualization subsystems—these three subsystems are addressed

below. Results of various types are moved into storage upon

job completion and data management operations are performed

(e.g., database table updates for file searching and provenance).

Within the front end, there are many other forms such

as those for displaying contents of data files, file metadata,

visualizations of graphs, and job history with links to input

and output files. But many of these capabilities are part of

net.science system-wide functionality that many components

(not just NetSimS) use. Here, our focus is on NetSimS.

A. Simulation Subsystem

This subsystem consists of the following components.

1) Web App: The graphical interface of the web app in

net.science is shown in Figure 3. It contains sections to specify

a network, select a contagion model and enter contagion

model parameters, initial conditions, simulation parameters,

and output filename. A graph file (e.g., edge list) is specified

as an input. One of several contagion model classes can be

selected (e.g., SIR, SEIR, SIS, and threshold models), along

308

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 03,2023 at 15:15:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: The web interface of net.science depicting the input form in NetSimS for specifying simulation input parameters. A few parameters
are not shown owing to space limits.

with submodels from each model class. Model parameters

vary depending on the model. Input fields for properties

of one SEIR model variant are shown in Figure 3. The

number of iterations (i.e., simulation instances) to run and

the duration (time steps) of each iteration are specified as a

part of the simulation parameter set. Initial condition files are

generated by adding metric-based configurations to filter and

prioritize nodes. Figure 3 shows filtering based on node degree

and clustering coefficient, as one example. These nodes are

eventually sampled and assigned a particular activated state

(e.g., I) alongside their default states (e.g., S).

We now discuss the two primary modules that compute

initial conditions and execute simulations, and hence perform

the operations specified by a user in Figure 3.

2) Initial Conditions Module: The graph-seeding compo-

nent is responsible for generating initial conditions. In CSon-

NET, the initial condition is a complete list of nodes with

their assigned states for each iteration prior to simulation

runs. An operational diagram of the graph seeding module

is shown in Figure 4. The Seed Set Generator executable, run

at the backend of Figure 2, takes three categories of inputs:

(i) required and optional parameters in the form of command

line arguments (CLA), (ii) a configuration file that defines

metrics and filtering, and (iii) a graph file used to compute

metrics and generate seed node sets. For this discussion, let

V and E denote the sets of nodes and edges in the graph

G(V,E), and n = |V | denote the total number of nodes. The

CLAs specify all input and output file paths, the number of

iterations, default and activated states, sampling method, etc.

The configuration file is used to specify graph metrics (e.g.,

degree, betweenness centrality, authority/hub scores, clustering

coefficient, eigenvector centrality, pagerank) and their upper

and lower limits to filter nodes. For a metric with index m,

the mth entry (line) in the configuration file specifies its upper

(kmupper) and lower (kmlower) limits, sorting order, and metric

weight, wm. An arbitrary number of metrics can be specified

by adding entries to the configuration file to incorporate those

measures in seed node selection.

We now formally describe the methodology that uses these

metrics to select the seed sets. Let M be the total number of

309

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 03,2023 at 15:15:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Operational diagram of the graph-seeding module that
generates initial conditions for contagion simulation on networks. The
module uses either SNAP [41] or NetworkX [42] libraries to compute
graph properties, depending on the metrics given in the configuration
file. The command line arguments provide paths to all input and
output files and other parameters.

metrics specified in the configuration file. Let kmvi denote the

value of metric m for node vi ∈ V . For each metric m, the

seed generator uses the appropriate graph analysis function

and computes the values for all nodes. Once the kmvi values

are computed for all vi ∈ V and m ∈ {1, 2, . . . ,M}, nodes

are filtered as follows. Let

V m = {vi|vi ∈ V and kmlower ≤ kmvi
≤ kmupper}. (1)

Here, V m is the set of remaining nodes after filtering based on

the mth metric. After completing M filtering steps, the final

node set is given by

U =

M⋂

m=1

V m . (2)

For each metric, the values are normalized to be in the

range [0, 1] across all nodes to ensure fair participation of

that measure in final node selection. The normalization is

performed as follows:

kmmax = max(kmv1 , k
m
v2 , ..., k

m
vn
) ,

kmmin = min(kmv1
, kmv2

, ..., kmvn
) , and

qmvi =
kmvi − kmmin

kmmax − kmmin

.

(3)

Here, qmvi is the normalized quality score of node vi for metric

m. Metrics are usually specified to be used in descending order

of normalized scores (e.g., prioritizing high-degree nodes). If

a user wants nodes to be prioritized in an ascending order for

a metric (e.g., pick nodes with low clustering coefficients), the

quality scores for that metric are complemented for all nodes

vi ∈ V :

qmvi = 1− qmvi . (4)

Once quality scores for all the required metrics have been

computed for all the nodes, a weighted sum determines the

combined score Qvi
for each node vi ∈ V :

Qvi =

M∑

m=1

wiq
m
vi . (5)

The filtered subset of nodes U , computed in Equation (2),

is now available for sampling. A probability distribution is

computed from the combined scores as follows:

p(ui) =
Qui∑

uj∈U Quj

. (6)

The final set of seed nodes, for each simulation instance (i.e.,

iteration) within a group of simulation instances, is obtained

by randomly sampling U using this probability distribution.

A pseudocode description of our method of generating initial

conditions is given in Algorithm 1.

Algorithm 1: Initial Condition Generation

1 Inputs (1) A graph G = (V,E), (2) Configuration file with
M entries (i.e., metrics), and (3) Parameters related to file
paths, input graph type, sampling method, iterations, etc.

2 Output Initial condition file

3 Steps:
A. Read command line argument parameters. Let R be the

number of iterations and let nA be the number of nodes to
be activated in each iteration.

B. Read the graph into program memory.
C. Read the configuration file. Let M be the no. of entries.
D. if M �= 0 then

1. for m = 1 to M do:

i. Compute metric values km
vi specified by entry m.

ii. Generate filtered node subsets V m using
Equation (1).

iii. Compute normalized node score qmvi using
Equations (3) and/or (4).

2. Compute the combined node quality metric Qvi

using Equation (5).
3. Obtain node set U for sampling using Equation (2).
4. Compute the probability distribution p(ui) from

Equation (6).
5. for r = 1 to R do:

i. Initialize each node in V to the default state.
ii. Sample nA nodes using distribution p(ui) and

assign the activated state to those nodes.
iii. Append node list and their states to the

output file for iteration r.
E. else

1. for r = 1 to R do:

i. Initialize each node in V to the default state.
ii. Sample nA nodes uniformly randomly from V

and assign the activated state to those nodes.
iii. Append node list and their states to the

output file for iteration r.

3) Computational Simulation Engine: The simulation en-

gine is an ABS framework, meaning that it is explicitly

designed to enable quick, surgical insertion and validation of

new contagion models. File input/output (I/O), data structures,

a general API for adding new models, simulation control flow,

concurrency, and optimizations for controlling simulations are

part of the framework, and switches in a simulation configu-

ration file enable customization of a simulation. The Python

implementation is a discrete-time simulation framework that

provides concurrency by forking processes: one simulation

instance of a collection of instances is assigned to one forked

310

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 03,2023 at 15:15:29 UTC from IEEE Xplore. Restrictions apply.

process. (A simulation typically consists of multiple instances,

where each instance starts at time t = 0 and steps through time

up to a maximum time, whereupon the instance is completed.

Multiple instances are typically required, e.g., they can in-

corporate different seed node sets (i.e., initial conditions), or

the same seed set if the contagion model is stochastic.) At this

time, 15 contagion models have been exposed to users through

the web app; more will follow. Owing to space reasons, we

refer the reader to [14] for more details on the simulation

system.

B. Data Analysis Subsystem

The data analysis subsystem performs computations on

simulation output and produces data files whose contents can

be directly visualized. Currently, the module takes as input

a raw simulation output file, a specified state of a contagion

model, and analysis type and produces time history data for

the specified state for all the nodes and simulation instances

(i.e., iterations). Three analysis types can be specified, namely

(i) new, (ii) cumulative, and (iii) current. These three types

compute respectively the number of new, cumulative, and

current nodes in the specified state at each time step. Often,

this code is run multiple times for one simulation since the

code is executed once for each analysis type.

C. Visualization Subsystem

The goal of the visualization subsystem is to produce

customized, publication-quality plots of simulation results.

The input to the plotting module is the output from the data

analysis module. A user can customize x- and y-axis labels,

tick labels, the ranges on each axis, type of axis (i.e., linear or

logarithmic), and font sizes. One can also specify the text for

curves in the legend along with the color and opacity for each

curve. The user can select any/all of the plot types: (i) error

bar plot (where error bars are displayed on data), (ii) line plot

(curves only; no data points), (iii) scatter plot (data only, no

curves), and (iv) bar chart. The plotting module can produce

output files in .pdf, .ps, .png, .eps, or .svg formats.

Figure 5 shows a portion of the web app form for plotting.

Plot types are shown on the left, and an expandable set

of legend text (one for each curve) is shown at the upper

right. X-axis configurations are shown at the bottom right;

commensurate inputs for the y-axis are not shown for space

reasons.

IV. PERFORMANCE EVALUATION

A. Networks Used in Studies

Details regarding the networks used in our studies are

provided in Table I. These vary over five orders of magnitude

in the number of nodes and edges. The Jazz network is a

graph of musicians [43]. The Wiki and Slashdot are taken

from [44]. The PA-120k and PA-500k networks are synthetic

preferential attachment (PA) networks [45] and were gener-

ated in net.science. The Seattle networks are social contact

networks, where each node is a person, and each edge means

that the two nodes are in contact (i.e., are co-located) at

overlapping times. These networks are generated according

to the procedures in [46]. The suffix (18-75) means that only

people between the ages of 18 and 75, inclusive, are part of the

network; the network without the suffix contains all persons.

TABLE I: Networks used for analysis. There are mined (M),
synthetic (S), or constructed (C) networks. The net.science cyber-
infrastructure [10] was used to construct the two synthetic graphs
and to generate all network properties.

Structural Properties
Network Num. Num. Avg. Max. Largest

Nodes Edges Degree Degree k-core
Jazz, M 198 2,742 27.7 100 29
Wiki, M 7,066 100,736 28.51 1,065 53

Slashdot, M 77,360 469,180 12.13 2,539 54
PA-120k, S 120,000 2.4 M 39.99 2,686 20
PA-500k, S 500,000 9.99 M 39.99 5,405 20

Seattle (18-75), C 2.56 M 40.34 M 31.49 664 42
Seattle, C 3.52 M 66.51 M 37.82 879 43

B. Initial Conditions Computation

The seeding module that computes the initial conditions for

a simulation (i.e., assigns initial states to nodes) is evaluated

over the networks listed in Table I. Networks are evaluated

under three distinct scenarios, listed in Table II. The most

basic scenario, called Uniform, does not use any metrics or

filtering. In this case, all nodes are available for generating

the initial condition file. The nodes are sampled uniformly at

random. The second scenario, Deg-Clust uses a combination

of two metrics: node degree and node clustering coefficient.

For each metric, nodes whose values are outside the range

[min,max] (specified in the configuration file) are filtered out.

The remaining nodes are available for sampling, which is done

using a node probability distribution derived from the node

score (as discussed in Section III-A2). The third scenario, Deg-
Betw is similar to the second scenario, except that it uses node

betweenness centrality as the second metric.

TABLE II: Graph seeding scenarios for initial condition (IC) file
generation. Under “Filter Method,” nodes that have metric values
within the range [min,max] are kept as candidate nodes for seeding.
Values for min and max are network-dependent and are not specified
here for lack of space.

Scenario Metrics Filter Method Sampling
Uniform None None Uniform Random

Deg-Clust Node Degree [min,max] Node Probability
Clustering Coeff. [min,max]

Deg-Betw Node Degree [min,max] Node Probability
Betweenness Cent. [min,max]

The performance analysis results are shown in Figure 6. The

bars indicate the total time for generating initial condition files

for simulations. The total time is the sum of the times required

for metric computations, node filtering, node sampling, and

writing the output file. The breakdown of the time values for

a few selected networks under three different scenarios are

shown in Table III. For large networks, some of the analysis

results for Deg-Betw scenarios are missing in Figure 6. This is

due to the fact that the computations of betweenness centrality

311

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 03,2023 at 15:15:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: The web interface of net.science depicting the input form in NetSimS for specifying inputs for simulation results plots. Some inputs
on the form continue at the bottom of this snapshot.

could not be finished within reasonable times for such large

graphs. This is typical for large networks and betweenness

centrality, since the running time for this centrality measure

is O(|V | |E|) [47]. Another use of these computations beyond

providing the specified running times is to identify combina-

tions of parameters that are particularly onerous to compute.

TABLE III: Seeding performance analysis on selected networks.
Here, NA denotes “not applicable.” (Uniform sampling scenarios do
not require metric computation or filtering.)

Network Scenario Computation Times (seconds)
Metric Filtering Sampling Total

Wiki Uniform NA NA 0.80 0.80
Wiki Deg-Clust 0.38 0.34 0.81 1.53
Wiki Deg-Betw 81.58 0.34 0.80 82.73

PA-120k Uniform NA NA 14.15 14.15
PA-120k Deg-Clust 8.10 87.76 12.13 107.99
PA-120k Deg-Betw 64,260 86.25 11.87 64,358
Seattle Uniform NA NA 407.44 407.44
Seattle Deg-Clust 202.76 84,783 399.52 85,385

C. Agent-Based Simulations

Figure 7 contains strong scaling timing results for simu-

lations on five networks. All simulations use an SIR model.

The transmission (edge) probability of a susceptible node vi
being infected at time (t + 1) by an infected neighbor vj is

Pr(st+1
i = I | stj = I , sti = S) = 0.004. A node is infectious

(i.e., in state I) for four days; it then transitions to state R.

Results are the total time to run 100 iterations of 100 time

steps (i.e., days) on the specified networks. Each data point

is the average of ten measured values. Initial conditions are

that 300 nodes are initially in state I (those nodes with the

greatest degree) and the remaining nodes are in state S. For

these conditions, roughly 0.50 to 1.0 fraction of nodes across

the networks get infected in the simulations. The linear nature

of the data, on the log-log plot in Figure 7, demonstrates that

CSonNET exhibits strong scaling.

V. CASE STUDIES

Two case studies are performed using NetSimS. The first

case study uses the threshold model and explores the effects

312

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 03,2023 at 15:15:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: A comparison of computational times for generating initial
condition files across networks listed in Table I under the three
seeding scenarios listed in Table II. The total run time consists of
the times to compute metrics, filter nodes, sample seed nodes, and
write output files. Each bar is the average of five runs, where initial
conditions are computed for one iteration in each run. A few of these
cases are elaborated in Table III. For the scenario Deg-Betw, some
data are missing for very large networks. This is due to the long
computation times required by the betweenness centrality metric.

1 2 4 8 16 32 64
Number of Worker Processes

10

100

1000

10000

1e+05

1e+06

1e+07

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Wiki
Slashdot
PA-120k
PA-500k
Seattle

Fig. 7: Strong scaling results for CSonNET for five networks. The
approximately straight lines in the plot indicate that the simulation
code exhibits strong scaling on graphs up to millions of nodes.

of seeding method, number of seed nodes, and threshold

values on the spread of a social contagion, such as a protest

event [48], or joining an online platform [49]. The second case

study uses an SIR model [50] to assess the effect of seed node

selection methods and seed set sizes, in spreading a virus.

A. Case Study 1: Simulation of Social Protests

The spread of a contagion that represents participating

in a protest is simulated on the Seattle (18-75) network of

Table I, where individuals (graph nodes) are those people

between 18 and 75 years, and edges represent social (face-

to-face) contacts. The contagion spread is modeled with the

Granovetter threshold model [15]. All nodes are assigned

the same threshold θ and values range from one (simple

contagion) to eight (complex contagion) [51]. Initial conditions

for simulations are that 50 to 50,000 nodes (in powers of

10) are chosen in two distinct ways: i) sampled uniformly

at random from all nodes and ii) filtered nodes with clustering

coefficient in the range [0.05, 1.0] (this range avoids degree-

1 nodes) followed by random sampling using the probability

distribution derived from the node clustering coefficient. These

nodes are assigned the activated state (state 1), which indicates

that a node (person) is participating in a protest. The remaining

nodes are initially assigned the inactive or non-participating

state 0. A node changes from state 0 to state 1 when at least

θ of its neighbors are already in state 1. Over 40 simulations

were performed by systematically varying the numbers of seed

nodes, the compositions of seed node sets, and node thresh-

olds. Each simulation consisted of 50 simulation instances

(i.e., iterations), and the duration of each instance was 30 time

steps (days).

Figures 8a and 8b show results generated with NetSimS.

Figure 8a shows time history data of the cumulative number

of activated nodes for a simulation with ns = 50 randomly

selected seed nodes. The error bars represent ± one standard

deviation from the mean curve generated from 50 iterations.

If we take the final average value from Figure 8a for those

input conditions, and repeat this process for different seeding

methods and values of ns and θ, then the plot of Figure 8b

can be generated. The results show a precipitous reduction in

the final percentage of activated nodes with small increases

in threshold, except for very large seed set sizes. Generally,

for a given set of conditions, the percentage of activated

nodes is greater for seed nodes chosen randomly from all

nodes [denoted “(U)”in the legend] than for random seeding

of nodes whose clustering coefficient is in the aforementioned

range [denoted “(C)” in the legend]. Systems like NetSimS

are valuable because they can identify and quantify these

sensitivities of results to inputs.

B. Case Study 2: Simulation of Virus Transmission

An SIR model in NetSimS is used to compute the attack

size (i.e., numbers and fractions of infected nodes) in the PA-

120k network of Table I. The probability of transmission from

an infected node vi to a susceptible node vj , along undirected

edge {vi, vj}, is given by Pr(I | S) = 0.002. The infectious

duration for each infected node is 4 days (time steps). Fifty

simulation instances were computed in single-day increments,

each from time t = 0 through 30 days.

Seed nodes, i.e., nodes initially in the infected state I, are

chosen based on node degree in two steps. First, a subset

of nodes is selected (filtered) based on a [min,max] range

specified in the configuration file. Next, nodes are sampled

randomly based on probabilities derived from node scores

computed from degrees. We run different schemes of node

filtering. The first scheme (A) filters nodes with degree values

in the range [20, 30]. The second scheme (B) filters nodes with

degree values in the range [80, 250]. The number ns of seed

nodes is varied across simulations, using eight values of ns,

from 50 to 5,000 nodes. Nodes in the graph that are not seed

nodes are assigned the susceptible state S.

313

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 03,2023 at 15:15:29 UTC from IEEE Xplore. Restrictions apply.

(a)

0 2 4 6 8
Threshold

0

20

40

60

80

100

A
ct

iv
at

ed
 N

od
es

 (
P

er
ce

nt
ag

e)

ns=50 (U)
ns=500 (U)
ns=5k (U)
ns=50k (U)
ns=50 (C)
ns=500 (C)
ns=5k (C)
ns=50k (C)

(b)

Fig. 8: (a) Visualization using plotting module of NetSimS. Cumu-
lative activation curve for the Seattle (18-75) graph, for a simulation
using a deterministic threshold model (θ = 2) with ns = 50
randomly activated seed nodes per iteration. Simulation duration is
30 days. Error bars represent one standard deviation from the average
curve over 50 iterations. (b) Final fraction of agents (i.e., nodes in
the Seattle (18-75) graph) participating in a protest as functions of
seeding method, numbers of seeds, and thresholds of agents. In the
legend, results with seed nodes sampled from all nodes are denoted
“(U)” while those with randomly chosen seed nodes from those with
clustering coefficient in the range [0.05, 1.0] are denoted “(C)”.

Figure 9a displays the cumulative number of infected nodes

as a function of time in days, averaged over all 50 iterations,

with a ± one standard deviation error bar at each day. All

curves show the classic nonlinear increase in attack size with

time. Data at t = 30 days for these conditions and others are

used to produce the following result.

Figure 9b shows how the final fraction of infected agents

(at t = 30 days) increases with the number of seed nodes for

both seeding schemes. The second scheme (B) shows a greater

percentage of infected agents compared to the first scheme (A)

for all seeding configurations (50 to 5,000 seed nodes). This

is expected since nodes with greater degrees are selected in

the second scheme (B). The growth rate of the final fraction

of infected nodes with respect to the number of seeds is non-

linear; final infected fractions grow most rapidly for smaller

numbers of seeds. Again, we demonstrate the use of tools like

NetSimS to identify and quantify interesting input parameter

spaces and trends in simulation output.

VI. SUMMARY

The simulation system NetSimS models the spread of conta-

gions on populations represented as networks. It provides mod-

(a)

0 1000 2000 3000 4000 5000
Number of Seeds

0

10

20

30

40

In
fe

ct
ed

 N
od

es
 (

P
er

ce
nt

ag
e)

PA-120k, deg. [20, 30]
PA-120k, deg. [80, 250]

(b)

Fig. 9: (a) Cumulative infection curves for an SIR model run on
the PA-120k network for three values of ns, per the legend. All seed
nodes were selected from the nodes with degrees in the range [20,
30]. The duration of the simulations is 30 days (time steps). Each
curve presents the average over 50 iterations, with error bars as ± one
standard deviation. (b) Final fraction of nodes in the PA-120k graph
infected after 30 days from the spread of a virus using an SIR model
in agent-based simulations performed with NetSimS. The number of
seed nodes and the method used to select seed nodes were varied
across a set of simulations.

eling and simulation as a service (MSaaS). Our contributions

are listed in Section I-B. Our focus is on the use of the system

through a web app, but the web app uses the same API as third

party codes that make computationally demanding service

requests (e.g., large problems, large numbers of simulation

requests). The system is accessible through the freely available

cyberinfrastructure (CI) called net.science [10]. One limitation

of the system is that contagion models have to be explicitly

added to both frontend and backend. Also, the sizes of

networks used in simulations are limited by available memory

and computational power. We continue to extend the system by

adding new features. Directions for extension include adding

more contagion models to the simulation framework, seeding

methods to the initial conditions module, data analyses, and

visualizations. We are investigating the parallelization of the

Initial Conditions Module, e.g., by using NetworKit [52].

Acknowledgments: We thank the reviewers for providing

helpful comments, and Research Computing at UVA for

providing computational resources and technical support. This

research is supported by University of Virginia Strategic

Investment Fund award number SIF160, VDH grant VDH-21-

501- 0135-1, and NSF Grants OAC-1916805 (CINES), CCF-

314

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 03,2023 at 15:15:29 UTC from IEEE Xplore. Restrictions apply.

1918656 (Expeditions) and CMMI-1916670 (CRISP 2.0).

REFERENCES

[1] B. Prasse, M. A. Achterberg, L. Ma, and P. Van Mieghem, “Network-
inference-based prediction of the COVID-19 epidemic outbreak in the
Chinese province Hubei,” Applied Network Science, vol. 5, no. 1, pp.
1–11, 2020.

[2] A. Rizzo, B. Pedalino, and M. Porfiri, “A network model for Ebola
spreading,” Journal of theoretical biology, vol. 394, pp. 212–222, 2016.

[3] A. Adiga, N. Palmer, Y. Y. Baek, H. Mortveit, and S. Ravi, “Network
models and simulation analytics for multi-scale dynamics of biological
invasions,” Frontiers in Big Data, vol. 5, 2022.

[4] G. Chowell, J. M. Hyman, S. Eubank, and C. Castillo-Chavez, “Scaling
laws for the movement of people between locations in a large city,”
Phys. Rev. E, vol. 68, p. 066102, Dec 2003.

[5] M. Cinelli, W. Quattrociocchi, A. Galeazzi, C. M. Valensise, E. Brugnoli,
A. L. Schmidt, P. Zola, F. Zollo, and A. Scala, “The COVID-19 social
media infodemic,” Scientific Reports, vol. 10, no. 1, pp. 1–10, 2020.

[6] B. Doerr, M. Fouz, and T. Friedrich, “Why rumors spread so quickly
in social networks,” Communications of the ACM, vol. 55, no. 6, pp.
70–75, 2012.

[7] N. A. Christakis and J. H. Fowler, “Social contagion theory: examining
dynamic social networks and human behavior,” Statistics in medicine,
vol. 32, no. 4, pp. 556–577, 2013.

[8] C. Porath and C. Pearson, “The price of incivility,” Harvard business
review, vol. 91, no. 1-2, pp. 114–121, 2013.

[9] P. Glasserman and H. P. Young, “Contagion in financial networks,”
Journal of Economic Literature, vol. 54, no. 3, pp. 779–831, 2016.

[10] N. K. Ahmed et al., “net.science: A Cyberinfrastructure for Sustained
Innovation in Network Science and Engineering,” in Gateway Confer-
ence, 2020, pp. 71–74.

[11] C. A. Stewart, S. Simms, B. Plale et al., “What is cyberinfrastructure,”
in Proceedings of the 38th Annual ACM SIGUCCS Fall Conference:
Navigation and Discovery, 2010, p. 37–44.

[12] N. S. F. C. Council, “Cyberinfrastructure vision for 21st century discov-
ery,” 2007, TR.

[13] M. Welshons (Ed.), “Our cultural commonwealth: The report of the
american council of learned societies commission on cyberinfrastructure
for the humanities and social sciences,” American Council of Learned
Societies, Tech. Rep., 2006.

[14] J. Priest, A. Kishore, L. Machi et al., “CSonNet: An agent-based
modeling software system for discrete time simulation,” in Winter
Simulation Conference (WSC), 2021, pp. 1003–1014.

[15] M. Granovetter, “Threshold models of collective behavior,” The Ameri-
can Journal of Sociology, vol. 83, no. 6, pp. 1420–1443, 1978.

[16] D. Easley and J. Kleinberg, Networks, Crowds and Markets: Reasoning
About a Highly Connected World. Cambridge University Press, 2010.

[17] N. Collier and M. North, “Parallel agent-based simulation with repast
for high performance computing,” SIMULATION, vol. 89, no. 10, pp.
1215–1235, 2013.

[18] N. Minar, R. Burkhart, C. Langton, and M. Askenazi, “The Swarm
simulation system: A toolkit for building multi-agent simulations,” Santa
Fe Institute, Tech. Rep. 96-06-042, 1996.

[19] S. Luke, C. Cioffi-Revilla, L. Panait et al., “MASON: A Multi-Agent
Simulation Environment,” Simulation: Transactions of the Society for
Modeling and Simulation International, vol. 82, pp. 517–527, 2005.

[20] M. Kiran, P. Richmond, M. Holcombe, L. S. Chin, D. Worth, and
C. Greenough, “FLAME: Simulating Large Populations of Agents on
Parallel Hardware Architectures,” in AAMAS, 2010, pp. 1633–1636.

[21] G. Rossetti, L. Milli et al., “NDlib: a Python library to model and ana-
lyze diffusion processes over complex networks,” International Journal
of Data Science and Analytics, vol. 5, no. 1, pp. 61–79, 2018.

[22] D. W. Bauer Jr., C. D. Carothers, and A. Holder, “Scalable time warp
on blue gene supercomputers,” in Workshop on Principles of Advanced
and Distributed Simulation, 2009, pp. 35–44.

[23] J. Huang, L. Liu, and L. Shi, “Auction Policy Analysis: An Agent-Based
Simulation Optimization Model of Grain Market,” in Winter Simulation
Conference (WSC), 2016, pp. 3417–3428.

[24] P. Bhattacharya, S. Ekanayake, C. J. Kuhlman et al., “The matrix:
An agent-based modeling framework for data intensive simulations,”
in AAMAS, 2019, p. 1635–1643.

[25] R. J. Allan, Survey of Agent Based Modelling and Simulation Tools.
Science & Technology Facilities Council New York, 2010.

[26] K. Kravari and N. Bassiliades, “A Survey of Agent Platforms,” Journal
of Artificial Societies and Social Simulation, pp. 1–18, 2015.

[27] S. Railsback, D. Ayllón, U. Berger et al., “Improving execution speed
of models implemented in netlogo,” Journal of Artificial Societies and
Social Simulation, vol. 20, no. 1, 2017.

[28] M. J. North, N. T. Collier, J. Ozik et al., “Complex adaptive systems
modeling with repast simphony,” Complex adaptive systems modeling,
vol. 1, no. 1, pp. 1–26, 2013.

[29] M. Shahin, M. A. Babar, and M. A. Chauhan, “Architectural design
space for modelling and simulation as a service: a review,” Journal of
Systems and Software, vol. 170, p. 110752, 2020.

[30] E. Cayirci, “Modeling and simulation as a cloud service: a survey,” in
2013 Winter Simulations Conference (WSC). IEEE, 2013, pp. 389–400.

[31] J. E. Hannay, T. van den Berg, S. Gallant, and K. Gupton, “Modeling
and simulation as a service infrastructure capabilities for discovery,
composition and execution of simulation services,” The Journal of
Defense Modeling and Simulation, vol. 18, no. 1, pp. 5–28, 2021.

[32] S. Wang and G. Wainer, “A simulation as a service methodology
with application for crowd modeling, simulation and visualization,”
Simulation, vol. 91, no. 1, pp. 71–95, 2015.

[33] K. S. Perumalla, “μsik–a micro-kernel for parallel/ distributed simulation
systems,” in PADS, 2005.

[34] S. B. Yoginath and K. S. Perumalla, “Efficient parallel discrete event
simulation on cloud/virtual machine platforms,” ACM TOMACS, 2015.

[35] D. Zehe, A. Knoll, W. Cai, and H. Aydt, “SEMSim Cloud Service:
Large-scale urban systems simulation in the cloud,” Simulation Mod-
elling Practice and Theory, vol. 58, pp. 157–171, 2015.

[36] M. Rak, A. Cuomo, and U. Villano, “Mjades: Concurrent simulation
in the cloud,” in 2012 Sixth International Conference on Complex,
Intelligent, and Software Intensive Systems. IEEE, 2012, pp. 853–860.

[37] D. Procházka and J. Hodickỳ, “Modelling and simulation as a service
and concept development and experimentation,” in International Con-
ference on Military Technologies (ICMT). IEEE, 2017, pp. 721–727.

[38] S. J. Taylor, T. Kiss, A. Anagnostou, G. Terstyanszky, P. Kacsuk,
J. Costes, and N. Fantini, “The cloudsme simulation platform and its
applications: A generic multi-cloud platform for developing and execut-
ing commercial cloud-based simulations,” Future Generation Computer
Systems, vol. 88, pp. 524–539, 2018.

[39] C. Hüning, M. Adebahr, T. Thiel-Clemen, J. Dalski, U. Lenfers, and
L. Grundmann, “Modeling & simulation as a service with the massive
multi-agent system mars,” in Proceedings of the Agent-Directed Simu-
lation Symposium, 2016, pp. 1–8.

[40] F. Caglar, S. Shekhar, A. Gokhale et al., “Cloud-hosted simulation-as-a-
service for high school stem education,” Simulation Modelling Practice
and Theory, vol. 58, pp. 255–273, 2015.

[41] J. Leskovec and R. Sosič, “Snap: A general-purpose network analysis
and graph-mining library,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 8, no. 1, p. 1, 2016.

[42] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings of
the 7th Python in Science Conference (SciPy2008), 2008, pp. 11–15.

[43] P. M. Gleiser and L. Danon, “Community structure in Jazz,” Advances
in Complex Systems, vol. 6, no. 4, pp. 565–573, 2003.

[44] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[45] A.-L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, pp. 509–512, 1999.

[46] C. L. Barrett, R. J. Beckman, M. Khan et al., “Generation and anal-
ysis of large synthetic social contact networks,” in Winter Simulation
Conference (WSC), 2009, pp. 1003–1014.

[47] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
Mathematical Sociology, vol. 25, pp. 163–177, 2001.

[48] S. Gonzalez-Bailon, J. Borge-Holthoefer, A. Rivero, and Y. Moreno,
“The dynamics of protest recruitment through an online network,”
Scientific Reports, vol. 1, p. 7, 2011.

[49] D. Centola, “The spread of behavior in an online social network
experiment,” Science, vol. 329, pp. 1194–1197, 2010.

[50] H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Review,
vol. 42, pp. 599–653, 2000.

[51] D. Centola and M. Macy, “Complex contagions and the weakness of long
ties,” American J. of Sociology, vol. 113, no. 3, pp. 702–734, 2007.

[52] C. Staudt, A. Sazonovs, and H. Meyerhenke, “NetworKit: A tool suite
for large-scale complex network analysis,” Network Science, vol. 4, pp.
508–530, 2016.

315

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 03,2023 at 15:15:29 UTC from IEEE Xplore. Restrictions apply.

