SPECIAL SECTION ON BLOCKCHAIN TECHNOLOGY: PRINCIPLES AND APPLICATIONS

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 29, 2020, accepted August 6, 2020, date of publication August 24, 2020, date of current version September 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3019000

A Permissioned Distributed Ledger for the US

Beef Cattle Supply Chain

TANVIR FERDOUSI ", (Graduate Student Member, IEEE),

DON GRUENBACHER, (Member, IEEE),

AND CATERINA M. SCOGLIO", (Senior Member, IEEE)

Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA

Corresponding author: Tanvir Ferdousi (tanvirf @ksu.edu)

This work was supported in part by the National Science Foundation under Grant CMMI-1744812, and in part by the Global Food Systems

Seed Grant Program, Kansas State University.

ABSTRACT Distributed ledgers using blockchain have gained traction in the supply chain industry due
to their unique features of immutability and transparency. They have given people the abilities to solve
business problems which were impossible using traditional systems. The US beef cattle industry lacks
adequate traceability as most of the farm owners consider such data confidential; possibly harming their
businesses if exposed. This article attempts to solve this problem by proposing a smart contract-based supply
chain framework using a permissioned blockchain network. This system supports anonymity for the users
to protect identities and lets every user store their data locally, while ensuring that the changes are recorded
in the chain with cryptographic proofs (hashes). The proposed framework also has methods for the users
to perform business transactions and transfer animal-related data to new owners as required. In addition to
that, smart contracts have been added to conduct anonymous surveys for data aggregation. The technical
contribution of this article is in the system design on how users, data, and communications are handled to
maintain data ownership and user privacy while ensuring immutability and confidentiality at different levels
of data aggregation. This article also contains an evaluation of the system using integration tests where
the outcomes meet the expected design requirements. The framework can be applied to the US beef cattle
industry as well as other supply chains with minimal modifications.

INDEX TERMS Blockchain, smart contracts, animal tracing, proof of authority, supply chain management,

data security, privacy.

I. INTRODUCTION

Cattle industry in the US does not provide the appropriate
traceability for the rapid identification of likely infected cattle
during infectious outbreaks. The United States Department
of Agriculture (USDA) mandates veterinary inspections for
inter-state movements [1]. However, intra-state movement
data are kept private by the farm owners, which makes
it difficult to trace animal movements. There are several
projects which are addressing traceability. CattleTrace was
established in 2018 to create an infrastructure for an ani-
mal disease traceability system in Kansas [2]. Such projects
rely on mutual trust of the participants for keeping data
secure which can impede widespread adoption. In this article,
we propose a technological solution to the issue of security,

The associate editor coordinating the review of this manuscript and
approving it for publication was Patrick Hung.

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

privacy, and control of private and shared data using a per-
missioned blockchain. Blockchain technology is designed to
be immutable, transparent, and decentralized, which enables
secure communications among parties without the need of
intermediate or central authorities. Cryptocurrencies [3] were
among the first applications of blockchain which expanded
into multiple fields due to some useful features of the
blockchain architecture. The possibilities are endless with
smart contracts that can execute Turing-complete instruction
sets [4], [5].

Il. PRELIMINARIES

A. THE US CATTLE FARM SYSTEM

The beef supply chain consists of several components. One
prior work [6] divides the beef cattle operations into four
stages: ranch, stocker, feedlot, and packer. We add two more
components, distributor and retailer in order to complete

154833

https://orcid.org/0000-0003-2847-3494
https://orcid.org/0000-0003-4486-9229

IEEE Access

T. Ferdousi et al.: Permissioned Distributed Ledger for the US Beef Cattle Supply Chain

Ranch > Stocker > Feedlot

\A

Retail - Distributor - Packer

FIGURE 1. A block diagram of the US beef supply chain. The first three
(ranch, stocker, and feedlot) segments deal with live animal production.
The packer is the manufacturing plant. Once the beef is processed,

it reaches the consumers via distributors and retailers.

the chain. The diagram is shown in Figure 1. The cattle
stay at different farm types (Ranch, Stocker, and Feedlot)
based on their ages and weights. After starting its life in a
ranch, a steer or heifer moves into a Stocker when it is 6 to
9 months old and weighs about 400 to 700 pounds. Cattle
may move into Feeders for further weight gain. Feeder cattle
are aged between 12 to 24 months and weighs about 800 to
1,000 pounds. The time that cattle spend in a feeder is often
called the finishing phase. The animals are slaughtered at the
Packers where meats are prepared and packed for distribution.
We also add a Distributor stage prior to a Retailer as this can
be the case in many beef cattle operations. The consumer of
the products lies at the end of the supply chain.

B. PRIOR WORK AND MOTIVATION

There have been multiple blockchain based applications for
supply chains. Approximately 1.1 billion USD have been
invested in blockchain technology [7]. IBM and the Danish
shipping company Maersk created a platform named Trade-
Lens and experimented the use of blockchain in order to track
shipping containers around the world [8]. As an application in
the fishing industry, Provenance launched a project in Indone-
sia to track tuna using blockchain [9]. Lu et al. explored
the adaptability of blockchains for product traceability in
supply chains and discussed the technology’s strengths and
limitations [10]. Dudder et al. described a model to track
timber by using a tamper proof system based on blockchains
[11]. Saberi et al. discusses different barriers of blockchain
technology adoption and identifies the lack of collaboration
as one of the inter-organization barriers [12]. A work of
Casado-Vara discusses how blockchains can improve tra-
ditional linear supply chains into circular economies [13].
Another work developed a provenance knowledge framework
and addressed how it can enhance assurances of products
quality in the supply chain [14]. Leng et al. proposes a dual-
chain architecture for use in agricultural supply chains [15].
For traditional supply chains, adoption of this technology
would enable traceability and provenance [16]-[19], prevent
counterfeits and defects [20], reduce regulatory costs and
complexities [21], and even take advantage of smart trans-
portation systems [22]. After a recent E. coli outbreak in
Romaine lettuce, the difficulty in tracing back to the source of
infection prompted Walmart Inc. to work with IBM in order

154834

to use blockchains storing data of all leafy green vegetables
[23]. The technology was also applied in cattle industries.
One such example is the Beefchain system in Wyoming
that promise the ranch owners with opportunities to acquire
the differentiating profits based on the quality of beef (e.g.
premium grass-fed) [24].

Different applications have taken different advantages
from this technology. Wang et al. [25] proposed a decentral-
ized system where smart contracts enable fine grained access
control. Blockchains also made possible an anonymous rep-
utation system for vehicular ad hoc networks (VANET) [26].
It has been suggested to keep raw data off chain to deal
with scalability issues [10]. The security and the immutability
properties of blockchain have found popularity in electronic
health record (EHR) systems, a recent work uses interplane-
tary file system (IPFS) to store data off chain [27]. In sup-
ply chains, the benefits can be numerous including proof
of product delivery with automatic incentives [28], prove-
nance tracking [29], and traceability [30]. While different
applications focus on different benefits of the blockchain,
none of them properly fits the requirements of the US animal
farming industry. We need a system that can be easily adopted
to existing infrastructure while maintaining user anonymity,
animal/product traceability, and farm data ownership at the
same time.

C. SMART CONTRACTS AND BLOCKCHAIN

Blockchains uses a linked-list type of structure where a block
is linked to its previous block via the use of cryptographic
hashes. The hashes are computed from the contents of the
block. Hence, any modification in the contents of the previous
blocks would require all the subsequent blocks to be updated
too. This makes it difficult for a perpetrator to change any past
data. A block is confirmed in the chain via a process called
consensus where the participants in the chain (also called
miners) agree on the data contained by the block. There are
several configurations for blockchains. Bitcoin is a permis-
sionless and public network where anyone can join and partic-
ipate. There are frameworks such as Hyperledger or Ethereum
that can be deployed in permissioned networks. These can be
run in corporate or private setups where only the permitted
users can join and participate. There are multiple consensus
protocols, the most popular being Proof of Work (PoW). The
miner needs to successfully solve a cryptographic problem to
mine a block in PoW. This prevents parties with malicious
intents who want to corrupt the data, as they will run out
of computational resources while going against honest min-
ers in a practical world. However, POW is computationally
expensive and wasteful. In permissioned systems, several
other consensus protocols can be used such as Proof of Stake
(PoS), Proof of Authority (PoA), etc. These protocols use
significantly less computational resources compared to PoW.
In PoA based systems, blocks are signed by pre-approved
accounts called validators. A block in the chain contains a
list of transactions which are analogous to bank checks in the
context of cryptocurrencies. Many blockchain frameworks

VOLUME 8, 2020

T. Ferdousi et al.: Permissioned Distributed Ledger for the US Beef Cattle Supply Chain

IEEE Access

{ i [!

Profile Farm
Manager Manager

Transaction Trace Data
Manager Manager Aggregator

T T |

Smart Contracts

=

Ethereum ...
Node
System
Admin
P2P Network
AP /Data Access
- eeaacG " - Local Databases

FIGURE 2. A simplified block diagram of the blockchain based farm
animal management system. The blockchain network is shown in the
bottom where the solid circles represent blockchain nodes (clients). Each
blockchain client locally stores smart contracts, associated data, and the
respective farm animal databases.

now support smart contracts which are pieces of executable
code that run when a block is confirmed and modify the state
of the system. Smart contracts can hold codes that can enforce
business policies, privacy practices, and access control. They
can also hold data. The blockchain framework ensures that
everyone has the same version of code and data, which creates
trust.

Ill. THE PROPOSED SYSTEM

We have designed a system which ensures data immutability
while preserving data ownership. The system also supports
animal traceability, user anonymity, and data aggregation.
Our proposed system model is shown in Figure 2. More
details about the system can be found in Appendices A and
B. Our framework is designed on the Ethereum platform.
The framework supports smart contract storage and execu-
tion, which is a key to our work. The active nodes in the
network communicate as peer-to-peer (P2P), and there is
no centralized server like in the client-server model. Out-
side applications can connect to their respective nearest P2P
nodes to retrieve information, manage system operations, or
generate transactions. All transactions are stored in each of
the active nodes of the network. In addition to the trans-
actions, smart contracts are also stored redundantly in each
active node. Cryptographic hashes are computed for both the
transactions and the smart contracts, and then stored inside
the chain data structure in multiple blocks with timestamps
which themselves are linked like a linked list using the cryp-
tographic hashes of their contents. Hence, a modification in
the data or the code would require the system to recompute
the hashes. As the blockchain data structure is redundantly
stored in all the participating nodes, all nodes must agree
on the modification (e.g. come to a consensus). We define
four major smart contracts for managing the farm animal
tracking system: 1) Profile Manager, 2) Farm Manager,

VOLUME 8, 2020

3) Transaction Manager, 4) Trace Manager, and 5) Data
Aggregator as shown in Figure 2. The dots in the P2P Net-
work are Ethereum nodes (clients) (Either geth [31] or parity
[32] with Proof of Authority (PoA) configuration) where each
of them contains Ethereum transaction data, smart contract
bytecodes, and the blockchain itself. The business owners can
run such nodes in their local systems. Alongside the Ethereum
clients, a business owner would also run a local database ser-
vice for storing their raw farm data. The raw data contain ani-
mal data that include inspections, vaccinations, movements
and other relevant information. Each time a local database is
updated, a cryptographic hash is computed by combining all
the raw data of that farm and then stored in the blockchain (via
the Farm Manager contract). This hash links the blockchain
with the local database. Additional information on the local
database operation is available in Appendix B. Privacy and
a sense of ownership are the two key reasons why we chose
to keep the raw databases local to respective business own-
ers. The system is more resistant to eavesdropping and a
business owner is in control of how his/her data are used
or shared. However, in order to enforce data immutability
and create mutual trust, we use the blockchain to enforce
that any alteration in the local data must be reported with an
updated hash. Hence, any prospective purchaser or authorized
auditing entity can validate whether, how, and when the data
have been modified from the original state.

A. ALGORITHMIC PROCEDURES

The proposed blockchain-based animal farm management
framework will be able to perform a variety of tasks.
We demonstrate some of the basic tasks in this section.

1) USER PROFILE AND FARM MANAGEMENT
Several smart contracts in the system enforce user and farm
policies in order to keep the data secure and the identities
anonymous. The Ethereum account that deploys a smart con-
tract is automatically assigned as the administrator (admin)
for that contract. The admin has certain access permissions to
perform tasks related to management. Despite that, the admin
and all outside accounts are prevented from accessing and
modifying user and farm data. All users of the system (own-
ers, managers, viewers/auditors) must be registered by an
admin using the ProfileManager contract. All the farms
owned by the users must also be registered by the admin using
the FarmManager before they can participate in the system.
Someone willing to join the network first contacts the
network admin. The prospective user provides the admin
with a request containing access level desired (viewer (1),
manager (2)). This is off-chain communication and is
completed using traditional methods (emails, messages, let-
ters). Once a request is received and approved, the admin
generates a user id which is a 160 bit Ethereum address. The
admin registers the user by calling the registerUser ()
method. During this function call, the user ID and the access
level is sent as arguments. The ProfileManager contract
validates whether the function call is coming from an admin

154835

IEEE Access

T. Ferdousi et al.: Permissioned Distributed Ledger for the US Beef Cattle Supply Chain

1.1, 2.1 checkAccessLevel()

\4

1.2, 2.2 checkOwnerShip()

2.3 addMovementData()

Profile

Farm

Trace
Manager

Transaction
Manager

4.1 checkAccessLevel()

4b. updateFarminfo()

A

Manager Manager
A

A

A A

1. createTransaction()

3d. registerAnimal()

Y
Owner B

4a. updateFarminfo() H_
2. updateTransaction() _l
| I

3b. Transfer animal data

TR
Owner A

3c. Add data to Present DB

_¢

3a. Get animal data from Present DB, move to Archive DB

N > N >
Present Archive Present Archive
DB DB DB DB
DBMS B DBMS A

FIGURE 3. Detailed block diagram illustrating communication steps among the system

components during a business transaction.

and it checks if the requested user already exists in the system.
Upon validation, the Profile Manager registers the user. The
admin notifies the user with the confirmation and the users
Ethereum address. This address is not shared with anyone else
to keep the user identity secret. Once registered, the user can
access other contracts of the system. The admin can change
user access level by calling the updateUser () method. If a
user needs to be deactivated/restricted/terminated, the admin
can set the access level to 0.

A farm owner willing to register a farm requests the net-
work admin in an off-chain communication. This request
contains the owner’s Ethereum address that is already reg-
istered in the system. The admin generates a farm id which
is also a 160 bit Ethereum address. The admin calls the
registerFarm () method of FarmManager contract to
register the farm in the system. The FarmManager con-
tract validates whether the function call is coming from an
admin. It also checks if the farm id already exists in the
system or not. Once registered, the FarmManager con-
tract contains both the farm id and the owner id in mapped
data structure. After the registration is completed, the farm
owner can regularly update farm information by calling the
updateFarmInfo () method of the FarmManager con-
tract. During such calls, the animal count and the farm hash
are updated by the farm owner.

2) PROCESS OF BUSINESS TRANSACTIONS

A typical example of a financial transaction is shown
in Figure 3. We create a typical scenario where two parties
(farm owners) A and B exchange some animals. Creating the
transaction is a two step process where both owners need

154836

to communicate with the Transact ionManager contract
(Steps 1 and 2). In the first step, one farm owner proposes
a transaction by calling the createTransaction ()
method. This process creates a Transaction object in
the contract that contains several information including the
addresses of both owners, farm addresses, and the full list of
animals being transferred. Animals tags are stored in the list.
In the second step, the other owner confirms the transaction
using the updateTransaction () method. When a farm
owner communicates with the TransactionManager
contract, the contract validates permissions and ownership of
the farms between which the transaction would take place.
These are marked as sub-steps 1.1, 1.2, 2.1, and 2.2 in
Figure 3. Upon confirmation, the TransactionManager
stores anonymous movement data in the TraceManager
contract (step 2.3). After the confirmation, the seller/exporter
of the animal (Owner A in Figure 3) retrieves the data of
the animals in transaction from its local database (step 3a)
and transmit directly to the buyer/importer (step 3b). The
buyer/importer stores that data in its own local database (step
3c). The seller/exporter registers the sold animals to the new
farm (step 3d). The seller also removes the sold animal data
from its current database and archives them if necessary.
As both the party had their databases modified, they will
update the FarmManager contract with freshly computed
farm hashes (steps 4a and 4b). The FarmManager validates
their permissions and updates the hash values.

3) ANIMAL TRACING PROCESS
Our framework provides the ability to trace animals using
a TraceManager contract. Trace data are stored in the

VOLUME 8, 2020

T. Ferdousi et al.: Permissioned Distributed Ledger for the US Beef Cattle Supply Chain

IEEE Access

contract during a business transaction (See Figure 3, Step
2.3). There can be several reasons why someone would want
to trace an animal back to the origins. One such scenario
could be when a farm wants to use its reputation to gain
prospective customers by giving them a way to securely
verify whether their animal/food product came from that
farm or not. Another scenario could be tracing source of
infection during an outbreak in order to rapidly mitigate
the problem. The TraceManager contract stores animal
movement data in a nested key-value map structure. Each
animal is identified by its id (tag) which is used as the
key. A custom defined data structure Animal is consid-
ered to be the value. This structure contains another map
listing all the movements, each of which is an instance of
the structure Movement. We use simple indices as keys
to the movement map and keep track of the total number
of movements (hence, movement entries). The admin can
call the method getMovementCount () and provide the
animal id in order to know the total number of movement
entries. The admin can then call the getMovementdata ()
method with animal id and movement index as arguments
in order to get the actual movement entry. A movement
entry contains the source farm address, the destination farm
address and the time when the movement was recorded in the
blockchain.

4) DATA AGGREGATION PROCEDURE

Sometimes the scientific community or the industry can
benefit from summary data on animal production. Exam-
ples of such data can be average weekly growth of certain
breeds, effect of a vaccine, or growth improvements of animal
under certain diets. In situations like these, it is needed to
provide such information without jeopardising privacy of
the business. Hence, we implement a DataAggregator
contract to help with anonymous data collection. To han-
dle the data collection, the admin first creates a Dataset
object in the DataAggregator contract by calling the
createDataset () method. The method requires a key
and a secret as arguments. If the method succeeds, the key
would be used to locate the Dataset object and the
secret would be used to authenticate the accounts performing
read/write operations on the dataset. The admin is responsi-
ble to generate, maintain, and distribute this key-secret pair.
Using off-chain communications, the admin can request the
farm owners to provide certain summary data. These requests
contain a description of the data requested and key-secret pair
for the dataset. The farm owners, upon receiving such request
may or may not decide to participate in the survey. A survey
participant calls the addData () method to submit data, this
method requires the actual data, the key, and the secret as its
arguments. Once the submission period ends, the admin may
obtain the stored data using the getData () method which
also requires the key and the secret. Only the farms participat-
ing in the data sharing will be able to access the aggregated
information.

VOLUME 8, 2020

IV. SYSTEM ANALYSIS

In this section we evaluate our system and explain how it
handles anonymity of users, data security, and several other
aspects of trust.

A. USER PRIVACY

The private Ethereum blockchain users can operate in the
system without providing information that can identify them
or their location. Each user is provisioned by the system
administrator when an externally owned account (EOA) in
Ethereum is generated. These accounts have several compo-
nents including private keys and Ethereum addresses. Private
keys are always securely stored by the user itself and never
revealed outside. The public keys are derived from private
keys. The addresses are derived from public keys using the
Keccak-256 hash function where last 20 bytes (LSB) of the
hash are kept. The one-way hash function prevents asso-
ciation back to the public key. Hence, even after knowing
someone’s address, one cannot derive the identity of that
person.

Due to the system configuration as a private blockchain
network, outsiders generally cannot enter the system with-
out proper authorization from the administrator. If someone
already in the system, wants to impersonate another user,
it would be automatically prevented if private keys are not
accessible by anyone other than the legitimate owner.

B. DATA SECURITY

Each farm business may choose to store animal-related
data locally in their premises. A locally running relational
database (SQL) management system would contain tables
of data as shown in Figure 14. Each time the tables are
updated, a cryptographic hash is generated for each table
using a hash function. Eventually, all the table level hashes
are combined to generate a single hash which is stored in the
FarmManager contract by the user. This technique ensures
that data cannot be altered by single owner without updating
the hash in the Ethereum blockchain. If one needs to verify
the integrity of data, he/she can do so by recalculating the
hashes from the data. To enable faster verification of data,
the FarmManager contract also stores in its state variables,
hashes related to individual animal data. When animals are
transferred during a transaction, animal data are sent to the
new owner (steps 3a, 3b, and 3c in Figure 3). The new owner
can check the animal hashes stored in the FarmManager
contract and verify if they match with the data by recomputing
hashes from the received data.

C. PROVENANCE

The TraceManager contract stores trace data for every
animal that is moved from one farm to another. In addition to
that, every farm owner also keeps a record of the past move-
ment history of an animal with cryptographic hash as proof
in the blockchain system. While the cryptographic hashes
ensure the integrity of the data, the movement records in
the TraceManager contract provides faster tracing without

154837

IEEE Access

T. Ferdousi et al.: Permissioned Distributed Ledger for the US Beef Cattle Supply Chain

requesting data from independent local databases. If someone
wants to fabricate the origin of an animal or animal prod-
uct, he/she would face two major obstacles: i) the hashes
stored for the animal movement data won’t match and ii)
the trace data captured by the TraceManager would not
match. As a hypothetical situation, let’s assume the per-
son with an intent of corrupting animal trace data forms a
coalition with all the owners involved in the animal transfer
process. As the local databases are controlled by their respec-
tive owners, they could theoretically store and exchange
fabricated movement data and make it look real. However,
the TraceManager prevents such fabrication by making
the tracing process automatic. It only captures data from the
TransactionManager and for that reason, the entities
(owners and farms) involved in a transaction cannot fabricate
their addresses as they can only authenticate with their own
IDs.

D. SECURED DATA AGGREGATION

While surveys and collections of data are mostly beneficial,
owners may still be discouraged from a business perspective
if they fear loss of privacy. Our system contains a smart con-
tract in order to facilitate anonymous data collection. It uses
a simple key-secret pair to authenticate a submitter during
data collection and does not use any other identification
mechanism that can be exploited by others. Let’s assume a
hypothetical scenario, where the admin itself is corrupted in
its ability to protect user privacy. Although the admin has a
basic idea of who a user is due to the management of user
profile and farm ids, it does not have any access to user or
farm data. If the surveys were conducted by the admin in
a direct manner to collect user data, it could identify who
sent the data. However, the DataAggregator prevents
this issue by not keeping records of survey participants. The
admin, who has access to aggregated data, can only know how
many entries were submitted and what was submitted.

E. FAIRNESS OF THE SYSTEM

The system provides comparable levels of accessibility, secu-
rity, and privacy to its users. The consensus mechanism does
not differentiate among the participants. The lack of central
authority eliminates bias and gives power back to the individ-
ual entities. The local data ownership mechanisms indicated
in Figure 2 give the users more control over their private
business data. The origin tracking (provenance) makes the
system fair for the consumers as well who lie at the end of
the chain. Consumers can verify the authenticity of claims
about beef products made by the business entities.

F. RELIABILITY

Traditional server-centric systems have a vulnerability com-
monly referred to as: single point of failure. The redundancy
introduced by the proposed framework which takes advan-
tage of the Ethereum blockchain can mitigate this issue.
We categorize failures into two types: link failure and node
failure. A link failure is defined as the situation when a

154838

link connecting two blockchain nodes is unable to sustain
communication. On the other hand, a node failure is defined
as the scenario when a node cannot communicate with the
network via any of its links or any data stored on the node is
lost. As we are dealing with a peer to peer (P2P) network, link
failures do not affect operations unless enough links fail to
disconnect or isolate a node. A fully connected network with
n nodes has n(n — 1)/2 links (maximum number of edges in
an undirected graph). To keep the network fully operational
we need at least n — 1 links (minimum number edges needed
to maintain connectivity in an undirected graph). Hence,
up to (n — 1)(n — 2)/2 links can fail, and the system can
still operate. Note, this number depends on which links are
failing. In worse cases when all links connecting to a node
fail, that node becomes isolated. A user may still connect
to the network via any alternate node as the credentials
are valid across the system. Once the failed links recover,
the node can come out of isolation and re-sync all data.
A node failure has the same effect as the complete link failure
described above. If data is lost or damaged due to a node fail-
ure, the node can re-sync once connection is re-established.
Data loss is tolerable up to n — 1 nodes as every node
contains all the blockchain related data and smart contract
bytecodes.

G. COMPUTATIONAL COSTS

In Ethereum, gas cost is a measure of how much computa-
tional resource or storage is needed to complete a transaction
or a smart contract operation. Any operation that changes
the state of the Ethereum virtual machine (EVM) creates a
transaction and every such transaction has an associated gas
cost. Although gas costs imply spending real money in the
form of Ether when the main Ethereum network is used,
it is not the same in our case. In private chains, Ether has
no value. Nevertheless, it is an available measure of system
resource usage. We demonstrate the gas costs of contract
creation in Figure 4 and the costs of calling some commonly
used methods in Figure 5. In these figures, a higher gas
cost indicate that more processor cycles, dynamic memory,
or persistent storage are required in order to complete an
operation. It is important to note that, read only methods (that
does not change any data in the memory or the state of the
chain) do not create transactions at all. As every node has a
snapshot of the system, such methods simply read data from
the local running node.

The FarmManager and the TransactionManager
contracts implement a large number of functionalities (See
Figures 10 and 11), hence, it is no wonder that, they cost a
lot more gas (about three times more) compared to others.
The contract deployments are one-time operations which
are done at the beginning of the system setup. The opera-
tions depicted in Figure 5 can occur at any arbitrary time
once the system is running. These methods change the state
of the system by adding or modifying data in both mem-
ory and persistent storage. The methods related to business
transactions and movement data consume more resources

VOLUME 8, 2020

T. Ferdousi et al.: Permissioned Distributed Ledger for the US Beef Cattle Supply Chain

IEEE Access

Gas costs

< < <
a(\'bge 30’698 ao’bge

0 < o
o < a(\ga@\o 0’6\"}% <@
<«

Smart contract deployment

FIGURE 4. A comparative chart showing contract creation (deployment)
costs for the five proposed smart contracts. Gas cost is a measure of
computational resources (processing power and storage) needed for the
operation.

5
25 ><10‘

A: registerUser()
B: registerFarm()
C: updateFarminfo()
D: registerAnimal()
E: updateAnimal()
I~ F:setManager() 7
G: createTransaction()
H: updateTransaction(orderStatus=0,1)
I: updateTransaction(orderStatus=2)
J: createDataset()
K: addData()
1.5 |- L: addMovementData()

o

Gas costs

0.5

A B C D E F G H | J K L
Smart contract method call

FIGURE 5. A comparative chart showing costs of calling different smart
contract methods (functions) that change the state of the system. Read
only (view) methods are not included here. Gas cost is a measure of
computational resources (processing power and storage) needed for the
operation.

mostly due to their space complexity. They create new objects
and add new information. The updateTransaction ()
method has two distinct scenarios. When a transaction is
confirmed (orderStatus = 2), it stores the move-
ment data (internally calls the addMovementData ()
method). Hence, it requires significantly more gas compared
to the other scenarios such as, an order being proposed
(orderStatus = 1).

H. INTEGRATION TEST

We test several operational scenarios with a prototype running
system. The configuration of the prototype where these sce-
narios are simulated and tested is described in the appendix.

VOLUME 8, 2020

“from": "OxTEEE3EFO467EdBSESe904E69ASE4ABZI10B43429",

"topic": "Bx2a3393eSacf4fd5T9824b7de58976e4abdTbT32228Teafe2Badc2346eb16Ta00",
"event": "ReturnStatus",

"args":

"z2e2",
"1": true,
"code": "282",
"status": true,
"length": 2

FIGURE 6. The logs generated as a response by the FarmManager (with
address 0x768B. . .3429) contract when an authorized farm owner
attempts to update farm info. This result is generated from test case 1 of
Table 1.

"Bx51bA%9a37142a042cdSFECCEBAR1316459C8273004",
"8x2a393e5acf4fd5fIB24bTdeb580764ab0fbTI2228Teafe28adc23462b16Ta00",
"ReturnStatus"”,

"Bv: "483",
"1": false,
"code": "483",
"status": false,
"length”: 2

}

FIGURE 7. The logs generated as a response by the
TransactionManager (with address 0x51B6. . .3C94) contract when an

unregistered user attempts to create a business transaction. This result is
generated from test case 5 of Table 1.

getMovementCount ~

- I

animalid: "1515334092808"

0:uintd: 1

getMovementData ~
animalid: | ~1515334002898"

movementindex: 0

- I

0: address: Ox4Fb462D97AE3bd56265e52f9F3ab6b26i5EFAZG
1: address: Ox44919622A306cab9E71FAGT75di390f3aEG18830c
2: uint256: 1588899200

FIGURE 8. The returned outputs when the authorized admin attempts to
read trace data by calling the methods provided by the TraceManager
contract. Here, the results indicate an animal with id 1515334092898
was moved from farm A (0x4FB4...FA26) to farm B (0x4491...830C).
This result is generated from test case 6 of Table 1.

Every scenario consists of doing some tasks in order to simu-
late a situation. These test scenarios along with the outcomes
are described in Table 1. Every case is classified as either
positive or negative. The positive cases are those where all
the communications done with system are expected and valid
by design. The negative cases are those where one or more
operations done with the system are defined as illegal or
there was a failure in authentication or validation. The system
is designed in a way to provide secured environment and
ensure any breach of data or operational access. The logs
and results generated for few of the test cases are shown

154839

IEEE Access

T. Ferdousi et al.: Permissioned Distributed Ledger for the US Beef Cattle Supply Chain

TABLE 1. Integration test procedures and results.

No. Test Case Test type Prerequisites Tasks Results

1 Authorized farm Positive 1) Admin registers the farm owner ~ The farm owner (node 2) calls Status code 202. The
owner attempts to (node 2) with access level 2. ii) updateFarmInfo () toupdate FarmManager contract updates
update farm info Admin registers the farm (farm A) ~ farm (farm A) information. the information when the next

and appoints ownership (farm A - block is mined.
node 2) to the appropriate owner.

2 Unregistered user Negative The user (node 4) is never regis- Unregistered user (node 4) calls Status code 403. The
attempts to update tered to the system. updateFarmInfo () toupdate FarmManager contract rejects
farm info farm (farm A) information. the request as the validation fails.

3 Registered user Negative i) The user (node 3) is regis- The wuser (node 3) «calls Status code 403. The
attempts to update tered with access level 2. ii) The updateFarmInfo () to FarmManager contract rejects
info of a farm that is farm (farm A) is never assigned as update farm info for the farm the request as the validation fails.
not owned owned by the user (node 3). (farm A) that is not owned by it.

4 Authorized farm Positive 1) Admin registers the users (node ~ One farm owner (node 2) calls Status code 202. The
owner attempts to 2 and node 3) with access level createTransaction() to TransactionManager
create a business 2. ii) Admin registers the farms create a business transaction of contract accepts the proposal
transaction with (farm A and farm B) and appoints ~ several animals to be transferred upon validation and registers a
another authorized ownership (node 2 - farm A and from one farm (farm A) to another transaction when the next block
owner node 3 - farm B) to the respective ~ farm (farm B). is mined.

users.

5 Unregistered user Negative The user (node 4) is never regis- Unregistered user (node 4) calls Status code 403. The
attempts to create a tered to the system. createTransaction () to TransactionManager
business transaction create a business transaction. contract rejects the request as the

validation fails.

6 Admin attempts to Positive At least one transaction i) The admin calls the The TraceManager contract
retrieve trace data must be created and getMovementCount () responds to the method calls and

confirmed. Note: Here the method to know the number returns the results.
transaction 1581115549157 of movements recorded for
moved the animals an animal (1515334092898).
[1515334092888,1515334092898] ii)) The admin calls the
from farm A getMovementData ()
(0Ox4FB4...FA26) to farm method to get each row of
B (0x4491...8300). the movement entries for an
animal (1515334092898)

7 Unauthorized user Negative At least a single transaction i) Any user who is not an The TraceManager contract
attempts to retrieve must be created and admin (node 4) calls the responds with null value (0) as the
trace data confirmed. Note: Here the getMovementCount () validations fail.

transaction 1581115549157 method to know the number
moved the animals of movements recorded for
[1515334092888,1515334092898] an animal (1515334092888).
from farm A ii) Any user who is not an
(0x4FB4...FA26) to farm admin (node 4) calls the
B (0x4491...8300). getMovementData ()

method to get each row of

the movement entries for an

animal (1515334092888),

8 Invited user Positive i) Admin registers a data set with ~ Anuser who is a participant (node Status code 202. The
attempts to submit a key and a secret. (We use key: 4) calls the addData () method DataAggregator contract
survey data 1001, secret: 2020) ii) The key to submit some data to the data accepts the submission upon

and the secret are mailed to every set. validation and stores it when the
survey participant. next block is mined.

9 Unauthorized user Negative 1) Admin registers a data set with ~ An uninvited user (node 3) calls Status code 403. The
attempts to submit a key and a secret. (We use key: addData () method with wrong DataAggregator contract
survey data 1001, secret: 2020) ii) The test key-secret pair to submit some rejects the submission upon

user gets the incorrect key and data to the data set. validation.
secret (1003, 2019).

10 Admin attempts to Positive A data set must be registered and i) The admin calls the The DataAggregator con-
retrieve summary at least a single participant must getDataCount () method tract responds to the method calls
data submit some data. Note: Here the to know the number of data and returns the results.

data set with key: 1001 and se-
cret: 2020 is used. A user (node
4) submitted some data (0x44) in
the survey.

entries recorded in the survey. ii)
The admin calls the getData ()
method to get each row of data
collected in the survey.

in Figures 6, 7, and 8. The complete set of results can be found
in the supplementary materials document. The table validates

154840

how our proposed system is temper proof and provides data
security and traceability while maintaining user anonymity.

VOLUME 8, 2020

T. Ferdousi et al.: Permissioned Distributed Ledger for the US Beef Cattle Supply Chain

IEEE Access

V. CONCLUSION

In this article, we proposed a blockchain based sup-
ply chain management framework to be used in the US
beef cattle industry. We explained in detail how this sys-
tem will operate and communicate with various entities
involved. Finally, we analyzed how the framework will
work in order to ensure user anonymity, improve data pri-
vacy, and ensure trace data integrity. We performed inte-
gration tests to evaluate the system operation in various
scenarios.

The proposed framework operates as a private / consortium
blockchain and uses proof of authority (PoA) for achieving
consensus, eliminating the computationally expensive hash
computations. This enables us to run complex smart con-
tract functions and store more data on smart contract to
enable traceability and improve data security. The database
can be hosted on any SQL database management system
by properly configuring the specified schema. The smart
contracts can be run on any Ethereum based clients (geth,
parity etc.). The system requires an admin who will initiate
everything and register the users and their farm businesses.
This could be a potential weak point as the admin will know
the mappings of the user and the farm addresses. Hence,
despite being a trustless decentralized architecture dealing
with supply chains, the framework requires some trust. How-
ever, the smart contracts are carefully designed to isolate
private data from admins and any unintended users. The
owners do have control on who can see their data. Different
designs in the architecture may affect privacy, security, and
resource requirements. This design is optimized for the US
beef cattle industry with a focus on privacy, data owner-
ship, and security. The system runs optimally with traditional
computational resources and does not require any special
hardware. The technical knowledge on blockchains is also
commonplace given that it is being used in varying types of
industries including cryptocurrenices. However, blockchains
do have scalability issues when it comes to storage. With
time, the requirements on persistent storage would increase.
Ethereum supports light client nodes to help with such an
issue. In the future, it may also be possible for the blockchain
systems to discard data old enough to become irrelevant.
Blockchains also face adaptability issues as an emerging
technology and requires its users to go through a learning
curve.

Our proposed system provides a technical solution to
several specific issues encountered by the US farm indus-
try. It improves over the existing knowledge on how
blockchains can be utilized to meet the specific industrial
needs such as identity protection and data ownership
while ensuring immutability and product traceability. The
framework can be used in other supply chains with
minor modifications. Future work can focus on improv-
ing scalability of blockchains in general. While different
industries have varying requirements, most can ben-
efit from scalable, secured, and efficient blockchain
frameworks.

VOLUME 8, 2020

ProfileManager User

-userCount: uint 1 0.4

Sercount, -1 timeAdded: uint
-admin: address <>— accessLevel: uint
-userMap: mapping (address -> User)

+registerUser(userld: address,
accessLevel: uint)

+getUserInfo(userld: address): uint, uint
+updateUser(userld: address,
accesslLevel: uint)
+checkAccessLevel(userld: address): uint
-userExists(userld: address): boof
+checkAdminAccess(): boo!

+changeAdmin(newAdmin: address)
. J

FIGURE 9. The ProfileManager contract and its associated User data
structure. There can be multiple user profiles in the system, all of which
must be registered via the methods of this contract.

APPENDIX A

SMART CONTRACTS

The smart contracts are immutable pieces of code that runs in
the blockchain system. Our system has five smart contracts,
each with different objectives. In each of those, we define
variables, objects, and methods to enable different manage-
ment capabilities. The methods are designed to enforce poli-
cies regarding how to handle different aspects of the system
including permissions, data access etc. All of these contracts
are loaded into the system and configured by an adminis-
trator during the system initialization process. In response
to different method calls, we use Ethereum event logs to
understand different outcomes. We use the following HTTP
style response codes in these logs: 200 (OK/success), 201
(created), 202 (accepted), 400 (bad request), 403 (forbidden),
and 404 (not found).

A. PROFILE MANAGER

Every entity that accesses the system is managed and con-
trolled by the Profile Manager. As shown in Figure 9,
we define a data structure User, which has the following
components:

e timeAdded is the unix timestamp when the user
profile is created.

e accessLevel is the access classification for the user.
There are 3 distinct access levels: restricted (0),
viewer (1),andmanager (2).

Each entry of the User data structure is mapped through

a 160 bit Ethereum address which is the user id. The
ProfileManager contract also contains several state
variables:

e userCount is the number of registered users

e admin is the address of the system administrator.

e userMap is the mapping data structure that maps user

id to User object.

Initially, the creator of the smart contract is automatically
added as the admin by the constructor function. Only the
admin can register new user profiles, change permissions,
and change admins. Most of the methods (functions) contain
code snippets that validate the entity that invoked the call. The
methods in this contract are listed below,

154841

IEEE Access

T. Ferdousi et al.: Permissioned Distributed Ledger for the US Beef Cattle Supply Chain

FarmManager Farm

ownerld: address

1 0.*| animalCount: uint
<> farmHash: bytes

timeUpdated: uint

-farmCount: uint

-globalAnimalCount: uint

-admin: address

-PM: ProfileManager

-farmMap: mapping (address -> Farm)
-animalMap: mapping (uint48 -> Anima/)

N
+registerFarm(farmld: address, ownerld: 1
address)
+getFarminfo(farmld: address): address, 0.* Animal
uint, bytes, uint
+updateFarminfo(farmid: address, currentFarm:
animalCount: uint, farmHash: bytes) address

+checkOwnership(ownerld: address,
farmld: address): boo!
+checkOwnership(farmld: address): boo!
-farmExists(farmld: address): boo/
+registerAnimal(animalld: uint48, farmlid:
address)
+updateAnimal(animalld: uint48,
animalHash: bytes)
+getAnimalHash(animalld: uint48): bytes,
uint
-animalExists(animalld: uint48): boo!
+setProfileManager(pmAddress: address)
+getProfileManager(): address
+checkAdminAccess(): boo!
+changeAdmin(newAdmin: address)

.- J

animalHash: bytes
timeUpdated: uint

FIGURE 10. The FarmManager contract and its associated Farm and
Animal data structures.

e registerUser () adds a new profile to the system,
creates a User object and stores it using the userMap
mapping. Only an admin can call this function.

e getUserInfo () returns information about a user
based on the address given in the argument. The request-
ing entity must be an admin or the user itself.

o updateUser () updates the user profile. An admin
can call this function to change access permissions.

e checkAccessLevel () returns the access level of a
user given its address in the argument.

e checkAdminAccess () checks whether the current
contract method calling entity has the admin level access
(i.e., is the admin) or not.

e changeAdmin () assigns a new admin given the
address in the argument. Only the current admin can
call this function. Once called, if the contract transaction
is confirmed, the current admin will lose its status as
admin.

B. FARM MANAGER

The Farm Manager contract regulates the contents of the
farm databases (marked as ‘Local Databases’ in Figure 2)
and provides useful farm related operational functionalities.
The contract and its associated data structures are shown
in Figure 10. To store cryptographic proof of farm database
contents, we define the Farm data structure which has the
following components:

o ownerIdisthe 160 bit Ethereum address of the farm
owners profile.

e animalCount is the number of animals currently reg-
istered in the farm.

154842

« farmHash is the most recent cryptographic hash gen-
erated from the local database of the farm.

e timeUpdated is the unix timestamp when the most
recent farmHash was stored in the chain.

In addition to that, we define the Animal data structure
with the following components to store cryptographic proofs
of individual animal related data:

e currentFarm is the 160 bit Ethereum address of

the farm that owns the animal.

e« animalHash is the most recent cryptographic hash
generated from the animal from its information stored
in the database.

e timeUpdated is the unix timestamp when the most
recent animalHash was stored in the chain.

Each entry of the Farm data structure is mapped through a
160 bit Ethereum address which is the farm id. Each entry
of the Animal data structure is mapped through a 48 bit
animal id number. The FarmManager contract contains
several state variables:

o farmCount is the number of registered farms.

e globalAnimalCount is the total number of animals

combining all the registered farms.

o admin is the 160 bit Ethereum address of the system
administrator.

e PM is an object containing the address of the
ProfileManager contract. The methods defined in
ProfileManager can be used to validate user privi-
leges (For example, checking user access level).

o farmMap is the mapping data structure that maps farm
id to Farm object.

e animalMap is the mapping data structure that maps
animal id to Animal object.

Initially, the creator of the smart contract is automati-
cally added as the admin by the constructor function. The
admin can register new farms, link ProfileManager con-
tract deployed in the chain, and change admins. However,
the admin cannot access the contents of Farm data objects,
only the registered farm owners (i.e., Farm.ownerId) can
do so. The methods (functions) described below contain code
snippets to enforce such access control. The methods in this
contract are listed below:

e registerFarm () adds afarm to the system, creates a
Farm object and stores it in the contract. Only an admin
can call this function.

e getFarmInfo () returns information about a farm
based on the farm id (address) provided in the argu-
ment. Only a farm owner with proper access level can
call this function.

e updateFarmInfo () updates information about the
farm. Only a farm owner with proper access level can
call this function.

e checkOwnership () validates if the owner refer-
enced by the ownerId in the argument or the method
calling entity owns the farm referenced by the farmId
in the argument. It’s an overloaded method.

VOLUME 8, 2020

T. Ferdousi et al.: Permissioned Distributed Ledger for the US Beef Cattle Supply Chain

IEEE Access

o farmExists () checks whether a given farm refer-
enced by the farmId in the argument exists or not.

e registerAnimal () adds an animal to the system,
creates an Animal object and stores it in the contract.
If the animal is already registered, the method updates
the id of the farm that the animal is in.

e updateAnimal () updates the cryptographic hash of
an animal. Only the owner of the farm that contains the
animal can call this method.

e getAnimalHash () returns the cryptographic proof
of the animal data that is stored in the contract.

e animalExists () checks whether a given animal ref-
erenced by the animalId in the argument exists or not.

e setProfileManager () instantiates the PM (i.e.,
ProfileManager) object with the Ethereum address
of the Profile Manager contract deployed in the chain.
Only an admin can call this function.

e getProfileManager () returns the address of the
Profile Manager contract which is linked to this contract.
Only an admin can call this function.

e checkAdminAccess () checks whether the current
contract method calling entity has the admin level access
(i.e., is the admin) or not.

e changeAdmin () assigns a new admin given the
address in the argument. Only the current admin can
call this function. Once called, if the contract transaction
is confirmed, the current admin will lose its status as
admin.

C. TRANSACTION MANAGER

This contract handles business transactions that result in
transfers of animals among farms. It provides methods for
both the parties (sender and recipient) to initiate and confirm
transactions. It also automatically calls appropriate methods
of TraceManager to store movement data. The contract
and its associated Transaction data structure are shown
in Figure 11. The Transaction data structure has the
following components:

e srcFarm is the 160 bit Ethereum address of the
source farm (id).

e dstFarm is the 160 bit Ethereum address of the
destination farm (id).

e srcOwner is the 160 bit Ethereum address of the
owner (id) of the source farm.

e dstOwner is the 160 bit Ethereum address of the
owner (id) of the destination farm.

o« orderStatus is the current state of the order. It can
be either of the following values: proposed (1),
confirmed (2),orcanceled (3).

e animalCount is the number of animals listed in this
transaction.

e animalMap is the mapping data structure that stores
the tags of the animals listed in the transaction. An auto
incrementing index is used as the key which goes from
0toanimalCount - 1.

VOLUME 8, 2020

TransactionManager Transaction

srcFarm: address
dstFarm: address
srcOwner: address

1
dstOwner: address
0.* | orderStatus: int
animalCount: int

-transactionCount: uint

-admin: address

-PM: ProfileManager

-FM: FarmManager

-TM: TraceManager
-transactionMap: mapping (uint48 ->

Transaction) animalMap:
mapping(uint ->
+createTransaction(transactionld: uint48, uint48)

srcFarm: address, dstFarm: address,
srcOwner: address, dstOwner: address,
orderStatus: int, animalList: uint48[])
+updateTransaction(transactionld: uint48,
orderStatus: int)
+getTransactionInfo(transactionld: uint48):
address, address, address, address, int,
uint

+getAnimalList(transactionld: uint48): uint,
uint48[]

+getTransactionCount(): uint
+setManager(managerAddress: address,
managerType: uint)
+getManager(managerType: uint): address
-checkEligibility(srcFarm: address,
dstFarm: address, srcOwner: address,
dstOwner: address): boo!
+checkAdminAccess(): boof

+changeAdmin(newAdmin: address)
. J

timeUpdated: uint

FIGURE 11. The TransactionManager contract and its associated
Transaction data structure.

« timeUpdated isthe most recent unix timestamp when

the transaction was created/modified.
Each entry of the Transaction object is mapped

through a 48 bit transaction id which is the unix times-
tamp of when the transaction was generated by a client.
The TransactionManager contract also contains several

state variables:
e transactionCount is the number of transactions

handled by the manager so far.

¢ admin is the address of the system administrator.

e PM is an object containing the address of the
ProfileManager contract. The methods defined in
ProfileManager can be used to validate user privi-
leges (For example, checking user access level).

« FM is an object containing the address of the
FarmManager contract. The methods defined in
FarmManager can be used to validate the ownership
of the farms (For example, checking if user A owns farm
F).

« TM is an object containing the address of the
TraceManager contract. The methods defined in
TraceManager can be used to store animal movement
data.

e transactionMap is the mapping data structure that

maps transaction id to Transaction object.
Initially, the creator of the smart contract is automati-

cally added as the admin by the constructor function. The
admin can link other contracts such as, ProfileManager,
FarmManager, and TraceManager deployed in the
chain and change admins. However, admins cannot create,
update, or access business transaction data, only the parties
involved in the transaction can do so. The methods in this
contract are listed below:

154843

IEEE Access

T. Ferdousi et al.: Permissioned Distributed Ledger for the US Beef Cattle Supply Chain

e« createTransaction () creates a new transaction
and submits it into the system to be processed by all the
participants listed in the transaction. The method calling
entity must be an owner of one of the farms involved in
the transaction with necessary privileges.

e updateTransaction () updates the state of an
existing transaction. The method calling entity must be
an owner of one of the farms involved in the transaction
with necessary privileges.

e getTransactionInfo () returns the contents of an
existing transaction stored in the contract. The method
calling entity must be either the srcOwner or the
dstOwner listed in the transaction.

e getAnimallist () returns an array containing the
tags of the animals listed in the transaction. The method
calling entity must be either the srcOwner or the
dstOwner listed in the transaction.

e getTransactionCount () returns the total number
of transactions handled by the Transact ionManager
so far.

e setManager () instantiates one of the three manager
contract (PM, FM, TM) objects with the Ethereum
address of that respective contract deployed in the
chain. The argument managerType determines which
manager to instantiate (ProfileManager (1),
FarmManager (2), or TraceManager (3)).
Only an admin can call this function.

e getManager () returns the address of one of the man-
ager contracts which is linked to this contract. The argu-
ment managerType determines which manager the
query is about. Only an admin can call this function.

e checkEligibility () is a private helper method
that validates the ownership of farms (by calling a
FarmManager method) and access privileges (by call-
ingaProfileManager method) of users. Thisis used
by other methods in this contract.

e checkAdminAccess () checks whether the current
contract method calling entity has the admin level access
(i.e., is the admin) or not.

e changeAdmin () assigns a new admin given the
address in the argument. Only the current admin can
call this function. Once called, if the contract transaction
is confirmed, the current admin will lose its status as
admin.

D. TRACE MANAGER

This contract enables traceability in the supply chain. It pro-
vides methods that the admin can use in urgent situations
to trace movements of targeted animals. The contract and
its associated data structure are shown in Figure 12. The
Animal structure contains all the movement data encapsu-
lated using the Movement structure which has the following
components:

e srcFarm is the id of farm that has sold/ delivered the
animal.

154844

o dstFarmis the id of farm that has purchased/ received
the animal.
e timeMoved is the unix timestamp when the trans-

fer (transaction) was confirmed.
Each entry of the Movement object is mapped through

an 8 bit auto-generated index in the Animal object. The

Animal structure contains the following components:
o movementMap is the mapping data structure that maps

an unsigned integer index to Movement object. The
index is handled automatically and it is local to each
Animal object.

e« movementCount is the total number of movement

entries for an animal.
Each entry of the Animal object is mapped through a

48 bit animal id (tag) in the TraceManager contract.
The TraceManager contract contains the following state

variables:
e animalCount is the number of animals handled by

the Trace Manager so far.
o admin is the address of the system administrator.
e« animalMap is the mapping data structure that maps

animal id (tag) to Animal object.
Initially, the creator of the smart contract is automati-

cally added as the admin by the constructor function. The
TransactionManager contract automatically uses meth-
ods from this contract in order to add/update trace data. How-
ever, only the admin can inquire this contract about movement
data on a particular animal. The methods in this contract are

listed below:
+ addMovementData () adds a single entry of move-

ment data for a particular animal.

e getMovementCount () returns the total number of
movements that were recorded for a particular animal.
Only an admin can call this method.

e« getMovementData () returns a single entry of move-
ment data for a particular animal given the animal id and
the index of the movement. Only an admin can call this
method.

e checkAdminAccess () checks whether the current
contract method calling entity has the admin level access
(i.e., is the admin) or not.

e changeAdmin () assigns a new admin given the
address in the argument. Only the current admin can
call this method. Once called, if the contract transaction
is confirmed, the current admin will lose its status as
admin.

E. DATA AGGREGATOR

This contract provides data structures and methods using
which the network administrator can collect and manage
anonymous survey data on the farming industry. The contract
and its associated Dataset structure are shown in Figure 13.

The Dataset structure has the following components:
o dataMap is the mapping data structure that maps an

integer index to byte data. The index is handled auto-
matically and it is local to each Dataset object.

o dataCount is the total number of data entries for a
Dataset.

VOLUME 8, 2020

T. Ferdousi et al.: Permissioned Distributed Ledger for the US Beef Cattle Supply Chain

IEEE Access

srcFarm: address
dstFarm: address
timeMoved: uint

- @@

FIGURE 12. The TraceManager contract and its associated Animal and
Movement data structures.

Each entry of the Dataset structure is mapped through
an unsigned integer which is regarded as the key of the data
set. In addition to the Dataset structure, the data aggregator
has the following state variables:

o datasetCount is the number of data sets handled by
the aggregator so far.

e admin is the address of the system administrator.

o datasetMap is the mapping data structure that maps
an integer key to a Dataset object.

e secretMap is the mapping data structure that maps
an integer key to a confidential access code / password
(regarded as the secret).

Initially, the creator of the smart contract is automatically
added as the admin by the constructor method. The admin
can add and configure new datasets, associate DataSet
keys with secrets, and retrieve stored data. The users can add
entries in a dataset if they can validate with the correct key-
secret pair. This contract has the following methods:

o addData () adds a single entry of byte data for a
particular dataset. The key and the secret given in the
argument determines the set and authenticates the entry.

e createDataset () creates and configures a new
Dataset object. Can only be called by the admin. The
key and the secret provided in the arguments must match
in the future for user entries.

e getDataCount () returns the total number of entries
that were recorded for a particular data set. Only an
admin can call this function.

e getData () returns a single entry of data for a particu-
lar dataset given the key, secret, and the data index. Only
an admin can call this function.

e checkAdminAccess () checks whether the current
contract method calling entity has the admin level access
(i.e., is the admin) or not.

e changeAdmin () assigns a new admin given the
address in the argument. Only the current admin can
call this method. Once called, if the contract transaction

VOLUME 8, 2020

e 7 s e 7
TraceManager Animal DataAggregator Dataset

-animalCount: uint . | movementMap: -datasetCount: uint dataMap:

-admin: address <>l 0. mapping(uint8 -> -admin: address 1 0. | mapping(uint ->

-animalMap: mapping (uint48 -> Anima/) Movement) -datasetMap: mapping (uint -> Dataset) <>_ byte)
movementCount: -secretMap: mapping (uint -> uint) dataCount: uint

+addMovementData(animalld: uint48, uint8

srcFarm: address, dstFarm: address) +addData(key: uint, value: byte, secret:

+getMovementCount(animalld: uint48): uint) —_—

uint8 " +createDataset(key: uint, secret: uint)

+getMovementData(animalld: uint48, +getDatasetCount(): uint

movementindex: uint8): address, address, 1 +getDataCount(key: uint, secret: uint): uint

uint 0% +getData(key: uint, secret: uint, index:

+checkAdminAccess(): boo! - uint): byte

+changeAdmin(newAdmin: address) Movement +checkAdminAccess(): boo!

+changeAdmin(newAdmin: address)
.- J

FIGURE 13. The DataAggregator contract and its associated Dataset
data structures.

is confirmed, the current admin will lose its status as
admin.

APPENDIX B

FARM ANIMAL DATABASE

The blockchain nodes store the smart contracts and the
Ethereum transaction (should not be confused with business
transactions) database. Each contract has storage options in
the form of state variables (including objects and arrays of
objects). Despite that, we do not store raw farm data in
the contracts as it would be computationally expensive to
maintain and the owners will feel a loss of control with their
data. Instead, we use a separate Relational Database Man-
agement System (RDBMS) to store raw farm data. We used
MySQL in our test bench, however, any SQL based DBMS
can be used. In each premise running a local farm RDBMS,
there are two databases (db) with identical schema: present
and archive. The present db contains information about the
animals currently owned/maintained by the farm. The archive
database is for storing historical data of the animals which
existed in the farm once but were sold. Once an animal is
sent out to another farm, all its relevant data from the present
database is moved to the archive database. The new owners of
the animal may request data during the purchase or sometime
in the future. However, the decision of how long the data
should be kept in the archive and what data could be shared
is at the farm owners (hence, data owners) discretion.

As already mentioned, both the present and the archive
dbs contain the same structure of tables. The db schema is
shown in Figure 14. The animals table is the root table.
Each animal is uniquely identified by the tag. The id fields in
the table can vary and are only used for indexing and linking
data. The true animal id that remains unchanged throughout
the animal’s lifetime is the t ag number which is also used by
the contracts to identify animals (animalId). The entries
of the inspections, vaccines, and movements table
are linked to the animals table via the use of foreign key,
animal_id. In these 4 animal data tables, we concatenate
the key fields (excluding id, animal_id fields) in each
row entry and compute a SHA3-224 hash of the concatenated
string. This hash is stored in the last field of each row entry.

154845

IEEE Access

T. Ferdousi et al.: Permissioned Distributed Ledger for the US Beef Cattle Supply Chain

m data_proofs v L inspections v
id INT id INT
animals VARCHAR(56) animal_id INT

movements VARCHAR(56)
vaccines VARCHAR(56)
inspections VARCHAR(56)
joint_hash VARCHAR(56)
compute_date DATETIME

tag VARCHAR(30)

age INT

weight INT

inspection_date DATETIME
sha3_hash VARCHAR(56)

> >
] animals v
id INT
tag VARCHAR(30)
[————— — breed VARCHAR(100) s 1
: birth_date DATETIME :
| sha3_hash VARCHAR(56) |
| > |
| |
il A
A A
] movements v] vaccines v
id INT id INT
animal_id INT animal_id INT
tag VARCHAR(30) tag VARCHAR(30)
from_farm INT vaccine VARCHAR(200)
to_farm INT vaccine_date DATETIME
move_date DATETIME sha3_hash VARCHAR(56)
sha3_hash VARCHAR(56) >

>

FIGURE 14. An entity relationship diagram depicting the database tables
and their relationships.

For a specific row entry, the hash is computed once and do not
change even if the animal undergoes a change. For example,
a new movement of the animal results in a new row entry
for that animal in the movement s table. The old entries (if
any) remain untouched. In order to store the cryptographic
proofs of the data, we combine hashes and compute hash of
the concatenated hashes. For each table, the hashes that are
concatenated are ordered by the primary key and a SHA3-
224 hash is computed for the string of hashes. The resultant
hash is called a table hash. We store the table hashes in the
respective fields of the data_proofs table. Once again,
the four table hashes in a row entry of the data_proofs
table are concatenated and a single hash is computed, which
iscalled joint_hash. This is the top-level hash for a single
farm database and is stored in the FarmManager contract of
the blockchain.

APPENDIX C

TEST SYSTEM CONFIGURATION

The test simulation was run on a system whose configura-
tion is described in Table 2. We use both parity [32] and
geth [31] as the Ethereum clients as they support proof
of authority (PoA) (also called ‘clique’ in geth) as a con-
sensus protocol. Both parity and geth can produce similar
results. The computational costs (gas cost) were computed
by connecting to parity nodes while the integration tests
were performed by creating a prototype running system using
geth. For the prototype system, we ran 6 geth nodes in
the same Linux system with separate data directory, con-
figuration file, keystore, and port numbers for each node.
For each node, we created a single user account: which

154846

TABLE 2. Test bench configuration.

Processor Core i5-3470 3.20 GHz x 4
Memory 8138 MB
Storage R/W 550/400 MB/s
Kernel Linux 4.15.0-96-generic
oS Ubuntu 18.04.4 LTS
Architecture x86-64
Parity version 272
Geth version 1.9.13
Remix version 0.10.1
Solidity compiler version 0.5.3
Consensus protocol Proof of Authority (PoA)
Step duration 5 seconds
No. of authorities (signers) 5
port: 30311
rpcport: 8545
account: 0x6D80...B876
Admin, Signer E
RLPx remix
— IDE
web3 RPC — E
remix
IDE
node 1
. — — port: 30312
peport: 5550 = = e D241 DIFS
account: 0x2441...
BCCO“B"[OxfﬁDA’d‘EACA farm: Ox4FB4...FA26
asic full node Owner of farm A, Signer
node 6 node 2
. — — port: 30313
r§§;g§;°§§fg —_— —_— rpcport: 8547
account gXSAEG F6EC acf;‘:r‘:‘"‘ufﬁéf?s’égf;”
lgner Owner of farm B, Signer
node 5 node 3
(=] remix
" IDE
node 4 remix

IDE

port: 30314
rpeport: 8548
account: 0x5228...4995
Signer

FIGURE 15. The prototype running system which was used for integration
tests. The 6 geth nodes are shown connected to each other in a P2P
network. Each node is configured with unique ports for RPC and RLPx
communications. Each node has an associated user account with an
Ethereum address as shown above. Five out of six nodes were configured
as signers, the first node was used as Admin. Remix IDE was used to
communicate with the nodes.

would either take part in POA consensus to validate and sign
blocks or deploy smart contracts and invoke contract meth-
ods. We configured 5 out of the 6 nodes to take part in the PoA
consensus (mining nodes) and node 6 was a basic full node.
We used the web-based remix [33] IDE (integrated devel-
opment environment) to write, deploy, and test the smart
contracts which are written in the Solidity [34] language.
Contract deployment and method invocations were done from
remix via web3 [35] by connecting to the running geth nodes
of the network via RPC (remote procedure call) ports. The
prototype system is illustrated in Figure 15.

ACKNOWLEDGMENT
The authors would like to thank Dr. David Amrine for his
valuable insights into the cattle industry of Kansas, USA.

VOLUME 8, 2020

T. Ferdousi et al.: Permissioned Distributed Ledger for the US Beef Cattle Supply Chain

IEEE Access

REFERENCES

[1]
[2]
[3]
[4]

[5]

[6]

[71

[8]
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

(2019). Animal Disease Traceability. [Online]. Available: https://www.
aphis.usda.gov
(2018). What is
cattletrace.org

S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System. Bitcoin.org,
2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

G. Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum Project Yellow Paper, vol. 151, pp.1-32,
Apr. 2014.

E. Androulaki ef al., “Hyperledger fabric: A distributed operating system
for permissioned blockchains,” in Proc. 13th EuroSys Conf., Apr. 2018,
p- 30.

Q. Yang, D. Gruenbacher, J. L. Heier Stamm, G. L. Brase, S. A. DeLoach,
D. E. Amrine, and C. Scoglio, “Developing an agent-based model to sim-
ulate the beef cattle production and transportation in southwest kansas,”
Phys. A, Stat. Mech. Appl., vol. 526, Jul. 2019, Art. no. 120856.

A. Banerjee, “Integrating blockchain with ERP for a transparent
supply chain,” Infosys Limited, Bengaluru, India, Tech. Rep.,
2018. [Online]. Available: https://www.infosys.com/oracle/white-
papers/documents/integrating-blockchain-erp.pdf

(2020). TradeLens. [Online]. Available: https://www.tradelens.com/
(2019). Provenance Tuna Tracking. [Online]. Available: https://www.
provenance.org/tracking-tuna-on-the-blockchain

Q. Lu and X. Xu, “Adaptable blockchain-based systems: A case study for
product traceability,” IEEE Softw., vol. 34, no. 6, pp. 21-27, Nov. 2017.
B. Diidder and O. Ross, “Timber tracking: Reducing complexity
of due diligence by using blockchain technology,” Univ. Copen-
hagen, Copenhagen, Denmark, Tech. Rep., 2017. [Online]. Available:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3015219

S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen, ‘“Blockchain technology
and its relationships to sustainable supply chain management,” Int. J. Prod.
Res., vol. 57, no. 7, pp. 2117-2135, Apr. 2019.

R. Casado-Vara, J. Prieto, F. D. la Prieta, and J. M. Corchado, ‘“How
blockchain improves the supply chain: Case study alimentary supply
chain,” Procedia Comput. Sci., vol. 134, pp. 393-398, Jan. 2018.

M. Montecchi, K. Plangger, and M. Etter, “It’s real, trust me! Establishing
supply chain provenance using blockchain,” Bus. Horizons, vol. 62, no. 3,
pp. 283-293, May 2019.

K. Leng, Y. Bi, L. Jing, H.-C. Fu, and I. Van Nieuwenhuyse, ‘“‘Research
on agricultural supply chain system with double chain architecture
based on blockchain technology,” Future Gener. Comput. Syst., vol. 86,
pp. 641-649, Sep. 2018.

H. M. Kim and M. Laskowski, “Toward an ontology-driven blockchain
design for supply-chain provenance,” Intell. Syst. Accounting, Finance
Manage., vol. 25, no. 1, pp. 18-27, Jan. 2018.

F. Tian, “A supply chain traceability system for food safety based on
HACCP, blockchain & Internet of Things,” in Proc. Int. Conf. Service Syst.
Service Manage., Jun. 2017, pp. 1-6.

M. Westerkamp, F. Victor, and A. Kiipper, ‘“Blockchain-based supply
chain traceability: Token recipes model manufacturing processes,” 2018,
arXiv:1810.09843. [Online]. Available: http://arxiv.org/abs/1810.09843
X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla,
“ProvChain: A blockchain-based data provenance architecture in cloud
environment with enhanced privacy and availability,” in Proc. 17th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID), May 2017,
pp. 468-477.

K. Toyoda, P. T. Mathiopoulos, I. Sasase, and T. Ohtsuki, “A novel
blockchain-based product ownership management system (POMS) for
anti-counterfeits in the post supply chain,” IEEE Access, vol. 5,
pp. 17465-17477, 2017.

H. Min, “Blockchain technology for enhancing supply chain resilience,”
Bus. Horizons, vol. 62, no. 1, pp. 35-45, Jan. 2019.

Y. Yuan and F.-Y. Wang, “Towards blockchain-based intelligent trans-
portation systems,” in Proc. IEEE 19th Int. Conf. Intell. Transp.
Syst. (ITSC), Nov. 2016, pp. 2663-2668.

R. Miller. (2018). Walmart is Betting on the Blockchain to Improve Food
Safety. [Online]. Available: https://techcrunch.com/2018/09/24/walmart-
is-betting-on-the-blockchain-to-improve-food-safety/

(2019). Wyoming Beefchain. [Online]. Available: https://beefchain.com/
S. Wang, Y. Zhang, and Y. Zhang, “‘A blockchain-based framework for data
sharing with fine-grained access control in decentralized storage systems,”
IEEE Access, vol. 6, pp. 38437-38450, 2018.

CattleTrace. [Online]. Available: https://www.

VOLUME 8, 2020

(26]

(27]

(28]

[29]

(30]

(31]
(32]

(33]
(34]
(35]

Z. Lu, W. Liu, Q. Wang, G. Qu, and Z. Liu, “A privacy-preserving
trust model based on blockchain for VANETS,” IEEE Access, vol. 6,
pp. 45655-45664, 2018.

D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, ‘‘Blockchain
for secure EHRs sharing of mobile cloud based E-health systems,” IEEE
Access, vol. 7, pp. 66792-66806, 2019.

H. R. Hasan and K. Salah, “Blockchain-based proof of delivery of phys-
ical assets with single and multiple transporters,” IEEE Access, vol. 6,
pp. 46781-46793, 2018.

K. Salah, N. Nizamuddin, R. Jayaraman, and M. Omar, “‘Blockchain-based
soybean traceability in agricultural supply chain,” IEEE Access, vol. 7,
pp. 73295-73305, 2019.

Q. Lin, H. Wang, X. Pei, and J. Wang, “Food safety traceability system
based on blockchain and EPCIS,” IEEE Access, vol. 7, pp. 20698-20707,
2019.

(2020). Go Ethereum. [Online]. Available: https://geth.ethereum.org/
(2020). Parity Ethereum. [Online]. Available: https://www.parity.
io/ethereum/

(2020). Remix. [Online]. Available: http://remix.ethereum.org/

(2020). Solidity. [Online]. Available: https://solidity.readthedocs.io
(2020). Web3. [Online]. Available: https://web3js.readthedocs.io

TANVIR FERDOUSI (Graduate Student Member,
IEEE) received the B.Sc. degree in electrical and
electronic engineering from the Bangladesh Uni-
versity of Engineering and Technology, Dhaka,
Bangladesh, in 2013. He is currently a Grad-
uate Student with the Department of Electrical
and Computer Engineering, Kansas State Univer-
sity. Prior to joining Kansas State University, he
was a Senior Software Engineer at the Samsung
Research and Development Institute Bangladesh

(SRBD), Dhaka, where he worked from 2013 to 2016. His research interests
include computer networks, network theory, and epidemic models.

DON GRUENBACHER (Member, IEEE) received
the B.Sc., M.Sc., and Ph.D. degrees from Kansas
State University, Manhattan, KS, USA, in 1989,
1991, and 1994, respectively, all in electrical engi-
neering. He is currently serving as the Department
Head and an Associate Professor with the Depart-
ment of Electrical and Computer Engineering,
Kansas State University. Prior to joining Kansas
State University as a Faculty Member, he was a
Member of Senior Staff with the Space Depart-

ment, Johns Hopkins University Applied Physics Laboratory, Laurel, MD,
USA, from 1994 to 1997, and from 1989 to 1990. His research interests
include the areas of computer networks, communications, and digital design.
He has been recognized as an Outstanding Faculty Member by the Eta Kappa
Nu and the Mortar Board.

CATERINA M. SCOGLIO (Senior Member, IEEE)
received the Dr.Eng. degree from the Sapienza
University of Rome, Italy, in 1987. She is currently
the Paslay Chair Professor with the Department
of Electrical and Computer Engineering, Kansas
State University. Before joining Kansas State
University, she worked at the Fondazione Ugo
= Bordoni, from 1987 to 2000, and the Georgia Insti-
" tute of Technology, from 2000 to 2005. She is also
affiliated with the Institute of Computational Com-

b
i"{.jl._ll

parative Medicine (ICCM), Kansas State University, as a Faculty Member.
Her main research interests include network science and engineering, and
modeling and analysis of complex networks, with applications in epidemic
spreading and power grids.

154847

